探索实时多目标跟踪:速度的重要性
2024-05-20 14:30:09作者:董灵辛Dennis
项目简介
tracking-by-detection 是一个基于检测的实时多目标追踪项目,源于作者的硕士毕业论文研究。这个系统采用滤波器模型来模拟物体运动,并利用匈牙利算法将新帧中的检测结果与预测位置关联。项目中,三种不同的相似度测量方式被用于比较边界框的位置和形状。在MOTChallenge挑战赛上,名为"C++SORT"的方法是最快的非匿名提交作品之一,同时也保持了不错的其他指标得分。
该项目不仅提供了源代码,还讨论了当在不同帧率下运行时,包括对象检测在内的整个模型性能的变化。结果显示,性能可能会降低50%,甚至高达90%,这表明较慢的方法可能无法应用于实时追踪,但对这一领域的更多研究显然是必要的。
项目技术分析
tracking-by-detection 使用了以下关键技术:
- 跟踪-by-detection:通过预先的物体检测,然后追踪已知物体的新位置。
- 过滤器模型:用于估计物体在连续帧中的运动。
- 匈牙利算法:用于在新帧中最佳匹配检测到的对象与旧帧中的目标。
- 多种相似度度量:考虑了边界框的位置和形状信息,以提高跟踪精度。
此外,项目依赖于dlib进行基础处理,使用OpenCV进行图像处理和Caffe进行物体检测。对于实时性能,Caffe的SSD(单阶段检测)模型和CUDA加速提供了关键支持。
应用场景
- 视频监控:实时跟踪场景中的多个移动对象,如交通监控或零售店安全监控。
- 自动驾驶:车辆需要实时跟踪周围的行人和其他车辆以确保安全驾驶。
- 体育赛事分析:自动追踪运动员,可用于数据收集和比赛策略分析。
- 机器人导航:帮助机器人理解环境中的动态元素,以便做出适当的反应。
项目特点
- 高效性:C++SORT 是MOTChallenge中最快的非匿名参赛方法,专为实时应用设计。
- 灵活性:可以独立跟踪预存在的检测,也可以从图像中直接检测和跟踪物体。
- 适应性强:系统能在各种帧率下运行,评估了速度对性能的影响,为实时跟踪提供有价值的研究依据。
- 可扩展性:代码结构清晰,方便与其他项目集成或进一步定制。
如果你正在寻找一个快速且高效的多目标跟踪解决方案,或者对实时视觉追踪有深入研究的兴趣,那么tracking-by-detection项目无疑值得你一试。务必引用项目作者的研究成果,如果你在你的研究中受益于此项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
146
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19