Sigma项目中的MITRE ATT&CK覆盖可视化分析
在网络安全领域,Sigma项目作为一个开源的通用签名格式,为安全分析师提供了丰富的检测规则库。这些规则与MITRE ATT&CK框架的映射关系对于评估检测覆盖范围至关重要。
背景介绍
MITRE ATT&CK框架是网络安全领域广泛采用的知识库,描述了攻击者在网络攻击生命周期中可能采取的各种战术和技术。Sigma项目通过其规则库提供了对这些攻击技术的检测能力,而将这些检测规则映射到ATT&CK框架可以帮助安全团队评估其检测能力的覆盖范围。
现状分析
目前Sigma项目中提供的MITRE ATT&CK Navigator层文件已经三年未更新,这可能导致安全团队无法准确评估最新的检测覆盖情况。随着攻击技术的不断演进和Sigma规则的持续增加,保持这一映射关系的时效性显得尤为重要。
解决方案
Sigma项目提供了两种主要方式来生成最新的ATT&CK覆盖可视化:
-
使用sigma-cli工具:通过sigma-cli工具的analyze命令可以动态生成ATT&CK热图。命令格式为
sigma analyze attack count 输出文件名 规则路径,这将分析指定规则目录中所有规则与ATT&CK框架的映射关系,并生成可视化的JSON文件。 -
自动化生成计划:Sigma项目团队正在计划为每个版本自动生成ATT&CK热图,这将确保用户始终能够获取最新的检测覆盖情况。这一功能预计将在未来版本中实现。
技术实现细节
sigma-cli工具的分析功能实际上会执行以下操作:
- 解析所有Sigma规则文件
- 提取每条规则中定义的ATT&CK技术ID(tactics和techniques)
- 统计每个技术ID对应的规则数量
- 按照MITRE ATT&CK Navigator要求的格式生成JSON文件
生成的JSON文件可以直接导入MITRE ATT&CK Navigator工具,以图形化方式展示Sigma规则对不同攻击技术的覆盖情况。颜色深浅通常表示覆盖的规则数量多少,帮助安全团队快速识别检测能力强弱区域。
最佳实践建议
对于安全团队使用Sigma规则库,建议:
- 定期使用sigma-cli生成最新的ATT&CK覆盖热图
- 重点关注覆盖薄弱的技术领域,考虑补充定制规则
- 将覆盖分析纳入安全检测能力评估的常规流程
- 关注Sigma项目更新,及时获取官方发布的自动化热图
通过这种方式,安全团队可以持续监控和优化其基于Sigma规则的检测能力,确保对最新威胁的有效覆盖。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00