深度学习归因方法:集成梯度在PyTorch中的实现教程
2024-08-30 22:11:26作者:郦嵘贵Just
欢迎来到集成梯度(Integrated Gradients)的实践指南,这是一个基于TianhongDai/integrated-gradient-pytorch的开源项目教程。本项目旨在提供一个简单而强大的axiomatic attribution方法的PyTorch版本,适用于任何深度神经网络模型的特征重要性分析。
目录结构及介绍
项目遵循清晰的组织结构,便于开发者理解和使用:
examples/:示例代码,展示如何应用集成梯度于实际模型中。figures/和results/:存放图表和实验结果,帮助理解算法输出。.gitignore: 版本控制忽略文件,排除了一些不需纳入版本管理的文件或目录。LICENSE: 项目使用的MIT许可证文件,定义了软件的使用权限。README.md: 项目简介和快速入门说明。integrated_gradients.py: 集成梯度的核心实现代码。main.py,utils.py,visualization.py: 分别提供了主运行逻辑、辅助工具函数以及可视化相关的功能。
项目的启动文件介绍
虽然项目的直接“启动”文件可能是指进行演示或测试的脚本,但关键的入口点更多体现在对integrated_gradients.py的调用上。开发者应从编写自己的Python脚本开始,导入integrated_gradients模块,并创建或加载模型以应用该算法。例如,简单的实验可以从实例化模型、准备输入和调用IntegratedGradients类的方法开始。
from captum.attr import IntegratedGradients
import torch
model = YourDefinedModel()
inputs = torch.tensor(..., requires_grad=True)
# 初始化并应用集成梯度
ig = IntegratedGradients(model)
attributions = ig.attribute(inputs, n_steps=50)
项目的配置文件介绍
本项目并未直接提及特定的配置文件,其配置主要是通过代码参数进行的。比如,在应用集成梯度时,模型参数、输入数据、步数(n_steps)、基线值(默认为零,但可自定义)、以及是否计算收敛增量等,都是通过函数调用来设定的。因此,对于配置的管理和调整,开发者应在调用相关函数时进行,而非依赖外部配置文件。
以上便是该项目的基本框架与核心操作概览。了解这些内容后,开发者可以深入到源码与示例中,进一步探索集成梯度的魅力,为自己的模型分析带来直观且有力的支持。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1