OpenCompass评估Llama3-8B和Qwen2-7B模型时准确率为0的问题分析
在大型语言模型评估工具OpenCompass的使用过程中,部分用户遇到了一个典型问题:当使用生成模式(gen)评估Llama3-8B和Qwen2-7B等基础模型时,结果显示准确率为0%。本文将深入分析这一现象的原因,并提供正确的评估方法。
问题现象
用户在使用OpenCompass评估Llama3-8B和Qwen2-7B等基础模型时,特别是针对commonsense_qa数据集,发现评估结果中的准确率显示为0%。类似地,在评估truthfulqa数据集时,还会遇到关于truth_model未设置的错误提示。
根本原因分析
经过技术分析,这一问题主要源于两个关键因素:
-
评估模式选择不当:基础模型(Base Model)不适合直接使用生成模式(gen)进行评估。生成模式通常适用于经过指令微调(Instruction-tuned)的模型,而基础模型更适合使用困惑度(perplexity, ppl)评估方法。
-
数据集评估方法不匹配:对于多选类问题数据集(如commonsense_qa),基础模型应该使用困惑度评估而非生成评估。生成评估更适合开放式问答场景。
解决方案
针对这一问题,OpenCompass官方给出了明确的解决方案:
- 使用困惑度评估模式:对于基础模型,推荐使用ppl模式进行评估多选类问题。正确的命令格式如下:
python -u run.py --datasets commonsenseqa_ppl --hf-num-gpus 1 --hf-type base --hf-path meta-llama/Meta-Llama-3-8B --debug --model-kwargs device_map='auto' trust_remote_code=True --batch-size 8
- 评估结果验证:使用正确的评估模式后,Llama3-8B在commonsense_qa数据集上的评估结果可达70.19%的准确率,这与预期性能相符。
技术建议
-
模型类型与评估方法匹配:在使用OpenCompass进行评估时,必须注意模型类型(base/chat)与评估方法(gen/ppl)的匹配关系。基础模型应优先考虑ppl评估。
-
数据集特性考量:不同数据集的设计目标不同,评估方法也应相应调整。多选类数据集通常更适合ppl评估,而开放式问答数据集则可以考虑gen评估。
-
错误排查:当遇到评估结果为0%或预测结果为空时,首先应检查评估模式是否与模型类型匹配,其次确认数据集配置是否正确。
总结
OpenCompass作为专业的语言模型评估工具,其评估结果的准确性高度依赖于评估配置的正确性。本文分析的准确率为0%的问题,本质上是一个配置问题而非工具或模型本身的问题。通过正确理解模型特性和评估方法的关系,用户可以获取更准确的模型性能评估结果。
对于基础模型的评估,困惑度方法(ppl)通常能提供更稳定和可靠的评估结果,特别是在多选类问题的评估场景中。这一方法通过计算模型对各选项的困惑度来判断其选择倾向,避免了生成模式可能带来的格式解析问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00