OpenCompass评估Llama3-8B和Qwen2-7B模型时准确率为0的问题分析
在大型语言模型评估工具OpenCompass的使用过程中,部分用户遇到了一个典型问题:当使用生成模式(gen)评估Llama3-8B和Qwen2-7B等基础模型时,结果显示准确率为0%。本文将深入分析这一现象的原因,并提供正确的评估方法。
问题现象
用户在使用OpenCompass评估Llama3-8B和Qwen2-7B等基础模型时,特别是针对commonsense_qa数据集,发现评估结果中的准确率显示为0%。类似地,在评估truthfulqa数据集时,还会遇到关于truth_model未设置的错误提示。
根本原因分析
经过技术分析,这一问题主要源于两个关键因素:
-
评估模式选择不当:基础模型(Base Model)不适合直接使用生成模式(gen)进行评估。生成模式通常适用于经过指令微调(Instruction-tuned)的模型,而基础模型更适合使用困惑度(perplexity, ppl)评估方法。
-
数据集评估方法不匹配:对于多选类问题数据集(如commonsense_qa),基础模型应该使用困惑度评估而非生成评估。生成评估更适合开放式问答场景。
解决方案
针对这一问题,OpenCompass官方给出了明确的解决方案:
- 使用困惑度评估模式:对于基础模型,推荐使用ppl模式进行评估多选类问题。正确的命令格式如下:
python -u run.py --datasets commonsenseqa_ppl --hf-num-gpus 1 --hf-type base --hf-path meta-llama/Meta-Llama-3-8B --debug --model-kwargs device_map='auto' trust_remote_code=True --batch-size 8
- 评估结果验证:使用正确的评估模式后,Llama3-8B在commonsense_qa数据集上的评估结果可达70.19%的准确率,这与预期性能相符。
技术建议
-
模型类型与评估方法匹配:在使用OpenCompass进行评估时,必须注意模型类型(base/chat)与评估方法(gen/ppl)的匹配关系。基础模型应优先考虑ppl评估。
-
数据集特性考量:不同数据集的设计目标不同,评估方法也应相应调整。多选类数据集通常更适合ppl评估,而开放式问答数据集则可以考虑gen评估。
-
错误排查:当遇到评估结果为0%或预测结果为空时,首先应检查评估模式是否与模型类型匹配,其次确认数据集配置是否正确。
总结
OpenCompass作为专业的语言模型评估工具,其评估结果的准确性高度依赖于评估配置的正确性。本文分析的准确率为0%的问题,本质上是一个配置问题而非工具或模型本身的问题。通过正确理解模型特性和评估方法的关系,用户可以获取更准确的模型性能评估结果。
对于基础模型的评估,困惑度方法(ppl)通常能提供更稳定和可靠的评估结果,特别是在多选类问题的评估场景中。这一方法通过计算模型对各选项的困惑度来判断其选择倾向,避免了生成模式可能带来的格式解析问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00