Seurat对象子集与原始数据集的差异表达分析指南
背景介绍
在单细胞RNA测序数据分析中,Seurat是一个广泛使用的R语言工具包。研究人员经常需要对数据进行不同层次的分析,包括从原始数据集中提取特定细胞亚群进行深入研究。本文将详细介绍如何在Seurat中比较子集对象与原始数据集之间的差异表达基因。
分析场景
假设我们有以下数据层次结构:
- 原始数据集:包含11个低分辨率聚类
- 第一级子集:从原始数据集的cluster-8提取,形成包含5个亚群的子集
- 第二级子集:从第一级子集的subcluster-1提取,形成包含6个高分辨率亚群的子集
我们的目标是分析第二级子集与原始数据集中其他细胞的基因表达差异。
实现步骤
1. 准备细胞标识
首先需要获取原始数据集和第二级子集中的细胞名称:
# 获取原始数据集所有细胞名称
cellnames_all <- Cells(original_object)
# 获取子集细胞名称
cellnames_subset <- Cells(subset2_object)
2. 创建比较标签
为原始数据集中的细胞创建标签,区分属于子集的细胞和其他细胞:
# 创建标签向量
labels <- ifelse(cellnames_all %in% cellnames_subset, "Subset", "Other")
3. 添加元数据
将创建的标签添加到原始数据集的元数据中:
# 添加标签列
original_labeled <- AddMetaData(original_object,
metadata = labels,
col.name = "ComparisonLabels")
4. 验证标签
检查标签是否正确应用:
# 设置活动标识
Idents(original_labeled) <- "ComparisonLabels"
# 统计各类细胞数量
table(Idents(original_labeled))
5. 执行差异表达分析
使用FindMarkers函数进行差异表达分析:
# 确保使用正确的assay
DefaultAssay(original_labeled) <- "RNA"
# 执行差异表达分析
de_results <- FindMarkers(original_labeled,
ident.1 = "Subset",
ident.2 = "Other",
logfc.threshold = 1,
test.use = "roc",
only.pos = TRUE)
注意事项
-
数据预处理:确保原始数据集和子集对象都已完成标准化、归一化和特征选择等预处理步骤。
-
assay选择:差异表达分析前确认使用正确的assay(通常是"RNA")。
-
阈值设置:根据研究需求调整logfc.threshold参数,控制差异表达的严格程度。
-
统计检验方法:test.use参数支持多种统计方法,如"wilcox"、"bimod"、"roc"等,选择适合研究问题的检验方法。
-
结果解释:差异表达分析结果包含p值、调整p值、logFC等指标,需要结合生物学背景进行解释。
高级应用
对于更复杂的比较场景,可以考虑:
-
批次效应校正:如果数据来自不同批次,分析前应先进行批次效应校正。
-
多组比较:使用FindAllMarkers函数可同时比较多个组别。
-
轨迹分析:结合拟时序分析可研究差异表达基因在发育或分化过程中的动态变化。
-
功能富集分析:对差异表达基因进行GO或KEGG通路分析,挖掘生物学意义。
总结
通过上述方法,研究人员可以系统地比较Seurat子集对象与原始数据集之间的基因表达差异。这种分析策略特别适用于研究特定细胞亚群的分子特征,或在复杂组织中识别稀有细胞类型的标志基因。掌握这一技术将有助于深入挖掘单细胞转录组数据的生物学意义。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00