Langchain-ChatGLM项目中ToolOutput序列化问题的分析与解决
在Langchain-ChatGLM项目的实际开发过程中,开发人员可能会遇到一个常见的API接口序列化问题。这个问题主要出现在调用/tool/call接口时,系统会抛出与ToolOutput类相关的序列化错误。本文将从技术角度深入分析这个问题,并提供专业的解决方案。
这个问题的本质在于FastAPI框架的默认JSON编码器无法直接处理ToolOutput类的实例。在Langchain-ChatGLM项目中,BaseToolOutput类被设计用来专门处理工具输出的序列化工作。这个基础类提供了将工具输出转换为字符串或JSON格式的方法,具体转换方式取决于初始化时提供的format参数。
要彻底解决这个问题,开发人员需要确保在/tool/call接口返回数据之前,ToolOutput实例已经被正确转换为可序列化的格式。这里有几种可行的技术方案:
-
显式转换方案:在返回ToolOutput实例前,可以调用str()函数将其转换为字符串格式。这种方法简单直接,适用于输出内容较为简单的情况。
-
参数控制方案:在初始化ToolOutput实例时,通过正确设置format参数来控制输出格式。当设置为JSON格式时,实例会自动处理为可序列化的JSON结构。
-
自定义编码器方案:对于更复杂的场景,可以创建自定义的FastAPI JSON编码器,专门处理ToolOutput类的序列化逻辑。这种方法虽然实现成本较高,但可以提供最大的灵活性。
在实际项目中,建议根据具体业务需求选择最适合的解决方案。对于大多数常规使用场景,参数控制方案通常是最佳选择,因为它既保持了代码的简洁性,又能满足序列化需求。
理解这个问题的关键在于认识到FastAPI框架的序列化机制与自定义类之间的关系。通过正确实现序列化逻辑,可以确保API接口的稳定性和可靠性,为用户提供更好的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00