在Scikit-learn中进行单位超球面聚类:von Mises-Fisher分布的魅力

项目介绍
本开源项目是基于Scikit-learn的一个扩展,专注于在单位超球面上的聚类算法。它实现了Banerjee等人在2005年发表于《Journal of Machine Learning Research》上的论文中提出的三种方法:“Clustering on the Unit Hypersphere using von Mises-Fisher Distributions”。这些算法旨在处理数据点位于高维空间表面(即单位超球面)的情况。
项目技术分析
项目包括以下算法:
-
Spherical K-means(spkmeans) 它与常规的K-means算法类似,但在每个最大化步骤结束时将估计的聚类中心投影到单位球面上,保证了中心的规范化。
-
Mixture of von Mises Fisher distributions(movMF) 这是一种以von Mises-Fisher分布为参数的混合模型,可以理解为具有“均值方向”和“浓度参数”的高维分布。movMF通过期望最大化(EM)算法来估计混合参数,实现数据的聚类。提供了“soft-movMF”和“hard-movMF”两种版本:
- soft-movMF 允许数据点对每个类别的归属概率有连续的估计,形成软聚类。
- hard-movMF 将每个示例的后验概率设置为其最可能类别的概率为1,其余类别为0,形成硬聚类。
项目及技术应用场景
这个项目非常适合那些数据点位于高维空间表面的场景,例如角度或方向数据。具体应用包括但不限于:
- 文档聚类,其中每个文档可以被视为一个词向量,且所有向量都已经被归一化到单位长度。
- 社交网络中的用户兴趣分析,用户的喜好可以用高维向量表示。
- 天文数据分析,如星星的位置或角速度测量。
项目特点
- 灵活性:支持不同类型的聚类策略,包括软聚类和硬聚类。
- 全面性:不仅估计聚类中心,还联合估计权重和浓度参数。
- 高效性:对于特定情况,spherical k-means是movMF算法的特例。
- 兼容性:与Scikit-learn接口一致,易于集成。
- 附加功能:提供从von Mises-Fisher分布采样的实用工具。
安装与使用
你可以通过克隆仓库并运行python setup.py install来安装项目,或者直接使用pip install spherecluster。然后,像使用Scikit-learn的标准estimator一样使用SphericalKMeans和VonMisesFisherMixture类。
该项目还包含了可执行的例子,展示如何在二维和三维的小规模混合分布上以及在文档聚类任务中使用这些算法。
在这个项目中,你可以找到对von Mises-Fisher分布的强大利用,使得在高维空间中的聚类任务变得更加精准和有效。如果你处理的数据集包含这样的特性,那么这个项目绝对值得尝试。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00