Mjx:一款高性能的日本麻将模拟器
2024-09-20 20:28:52作者:魏侃纯Zoe
项目介绍
Mjx 是一款专为日本麻将(立直麻将)设计的模拟器,旨在为麻将 AI 的开发和评估提供一个高效、精确且易于扩展的平台。Mjx 不仅能够作为游戏服务器运行,还具备与 Tenhou 完全兼容的特性,确保了游戏规则和结果的准确性。此外,Mjx 提供了类似 Gym 的 API,使得开发者可以轻松地进行大规模的强化学习和评估。
项目技术分析
Mjx 的核心技术优势在于其高性能和精确性。相比传统的麻将模拟器 Mjai,Mjx 的速度提升了 100 倍,这得益于其优化的算法和高效的实现。Mjx 还支持 gRPC,使得分布式计算变得简单,适合大规模的强化学习任务。此外,Mjx 提供了与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
项目及技术应用场景
Mjx 的应用场景非常广泛,特别适合以下领域:
- 麻将 AI 开发:Mjx 提供了丰富的 API 和高效的模拟环境,是开发和测试麻将 AI 的理想选择。
- 强化学习研究:Mjx 的分布式计算能力和 Gym 风格的 API 使其成为大规模强化学习研究的强大工具。
- 游戏规则验证:Mjx 与 Tenhou 完全兼容,可以用于验证和测试麻将游戏的规则和逻辑。
项目特点
Mjx 的主要特点包括:
- 高性能:比传统模拟器 Mjai 快 100 倍,适合大规模的模拟和评估任务。
- 完全兼容 Tenhou:经过大量 Tenhou 游戏日志的验证,确保规则和结果的准确性。
- Gym-like API:提供类似 Gym 的 API,方便强化学习模型的开发和测试。
- 分布式计算支持:通过 gRPC 实现分布式计算,适合大规模的强化学习和评估。
- Mjai 兼容:提供与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
- 美观的可视化:提供美观的游戏可视化界面,方便观察和分析游戏过程。
快速开始
你可以通过 Google Colab 快速体验 Mjx:
安装
Mjx 支持 Python3.7 及以上版本,目前支持 Linux 和 macOS Intel(10.15 或更高版本)。你可以通过 pip 安装 Mjx:
$ pip install mjx
示例代码
以下是一个简单的示例代码,展示了如何使用 Mjx 进行游戏模拟:
import mjx
from mjx.agents import RandomAgent
agent = RandomAgent()
env = mjx.MjxEnv()
obs_dict = env.reset()
while not env.done():
actions = {player_id: agent.act(obs) for player_id, obs in obs_dict.items()}
obs_dict = env.step(actions)
returns = env.rewards()
服务器使用
Mjx 支持通过 gRPC 进行分布式计算,以下是一个简单的服务器和客户端示例:
| 服务器 | 客户端 |
|---|---|
|
|
注意事项
Mjx 目前仍在积极开发中,API 可能会在 v1.0 之前发生变化。特别是以下几个方面:
env.rewards(reward_type)和env.done(done_type)的默认行为- Protobuf 模式
- 特征提取 API(目前由
Observation.to_features()提供)
如何开发
我们建议在容器中开发 Mjx,最简单的方法是通过 VsCode 打开此仓库。如果你有任何问题,欢迎联系 @sotetsuk。
引用
如果你在研究中使用了 Mjx,请引用以下文献:
@INPROCEEDINGS{mjx2022,
author={Koyamada, Sotetsu and Habara, Keigo and Goto, Nao and Okano, Shinri and Nishimori, Soichiro and Ishii, Shin},
booktitle={2022 IEEE Conference on Games (CoG)},
title={Mjx: A framework for Mahjong AI research},
year={2022},
volume={},
number={},
pages={504-507},
doi={10.1109/CoG51982.2022.9893712}}
许可证
Mjx 采用 MIT 许可证。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 STM32到GD32项目移植完全指南:从兼容性到实战技巧 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660