Mjx:一款高性能的日本麻将模拟器
2024-09-20 19:27:14作者:魏侃纯Zoe
项目介绍
Mjx 是一款专为日本麻将(立直麻将)设计的模拟器,旨在为麻将 AI 的开发和评估提供一个高效、精确且易于扩展的平台。Mjx 不仅能够作为游戏服务器运行,还具备与 Tenhou 完全兼容的特性,确保了游戏规则和结果的准确性。此外,Mjx 提供了类似 Gym 的 API,使得开发者可以轻松地进行大规模的强化学习和评估。
项目技术分析
Mjx 的核心技术优势在于其高性能和精确性。相比传统的麻将模拟器 Mjai,Mjx 的速度提升了 100 倍,这得益于其优化的算法和高效的实现。Mjx 还支持 gRPC,使得分布式计算变得简单,适合大规模的强化学习任务。此外,Mjx 提供了与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
项目及技术应用场景
Mjx 的应用场景非常广泛,特别适合以下领域:
- 麻将 AI 开发:Mjx 提供了丰富的 API 和高效的模拟环境,是开发和测试麻将 AI 的理想选择。
- 强化学习研究:Mjx 的分布式计算能力和 Gym 风格的 API 使其成为大规模强化学习研究的强大工具。
- 游戏规则验证:Mjx 与 Tenhou 完全兼容,可以用于验证和测试麻将游戏的规则和逻辑。
项目特点
Mjx 的主要特点包括:
- 高性能:比传统模拟器 Mjai 快 100 倍,适合大规模的模拟和评估任务。
- 完全兼容 Tenhou:经过大量 Tenhou 游戏日志的验证,确保规则和结果的准确性。
- Gym-like API:提供类似 Gym 的 API,方便强化学习模型的开发和测试。
- 分布式计算支持:通过 gRPC 实现分布式计算,适合大规模的强化学习和评估。
- Mjai 兼容:提供与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
- 美观的可视化:提供美观的游戏可视化界面,方便观察和分析游戏过程。
快速开始
你可以通过 Google Colab 快速体验 Mjx:
安装
Mjx 支持 Python3.7 及以上版本,目前支持 Linux 和 macOS Intel(10.15 或更高版本)。你可以通过 pip 安装 Mjx:
$ pip install mjx
示例代码
以下是一个简单的示例代码,展示了如何使用 Mjx 进行游戏模拟:
import mjx
from mjx.agents import RandomAgent
agent = RandomAgent()
env = mjx.MjxEnv()
obs_dict = env.reset()
while not env.done():
actions = {player_id: agent.act(obs) for player_id, obs in obs_dict.items()}
obs_dict = env.step(actions)
returns = env.rewards()
服务器使用
Mjx 支持通过 gRPC 进行分布式计算,以下是一个简单的服务器和客户端示例:
| 服务器 | 客户端 |
|---|---|
|
|
注意事项
Mjx 目前仍在积极开发中,API 可能会在 v1.0 之前发生变化。特别是以下几个方面:
env.rewards(reward_type)和env.done(done_type)的默认行为- Protobuf 模式
- 特征提取 API(目前由
Observation.to_features()提供)
如何开发
我们建议在容器中开发 Mjx,最简单的方法是通过 VsCode 打开此仓库。如果你有任何问题,欢迎联系 @sotetsuk。
引用
如果你在研究中使用了 Mjx,请引用以下文献:
@INPROCEEDINGS{mjx2022,
author={Koyamada, Sotetsu and Habara, Keigo and Goto, Nao and Okano, Shinri and Nishimori, Soichiro and Ishii, Shin},
booktitle={2022 IEEE Conference on Games (CoG)},
title={Mjx: A framework for Mahjong AI research},
year={2022},
volume={},
number={},
pages={504-507},
doi={10.1109/CoG51982.2022.9893712}}
许可证
Mjx 采用 MIT 许可证。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
【亲测免费】 PDFiumReader: 基于PDFium的Delphi PDF阅读器 Sigrity 2017 EMI仿真教程资源 CMake 与 Conan 的无缝整合:cmake-conan【sourcetree】 【亲测免费】 SourceTree 3.4.12 Windows 版本下载【亲测免费】 vfox 项目下载及安装教程【亲测免费】 探索编译原理的奥秘:合肥工业大学编译原理实验报告 axios-mock-adapter:轻松模拟HTTP请求的Axios适配器【亲测免费】 粒子群算法求解约束多目标优化万能Matlab代码【亲测免费】 Traymond 项目下载及安装教程【免费下载】 mingw-w64-8.1.0 多版本下载说明
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
501
3.66 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
暂无简介
Dart
748
180
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
490
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
318
134
仓颉编译器源码及 cjdb 调试工具。
C++
150
882
React Native鸿蒙化仓库
JavaScript
298
347