Mjx:一款高性能的日本麻将模拟器
2024-09-20 09:38:15作者:魏侃纯Zoe
项目介绍
Mjx 是一款专为日本麻将(立直麻将)设计的模拟器,旨在为麻将 AI 的开发和评估提供一个高效、精确且易于扩展的平台。Mjx 不仅能够作为游戏服务器运行,还具备与 Tenhou 完全兼容的特性,确保了游戏规则和结果的准确性。此外,Mjx 提供了类似 Gym 的 API,使得开发者可以轻松地进行大规模的强化学习和评估。
项目技术分析
Mjx 的核心技术优势在于其高性能和精确性。相比传统的麻将模拟器 Mjai,Mjx 的速度提升了 100 倍,这得益于其优化的算法和高效的实现。Mjx 还支持 gRPC,使得分布式计算变得简单,适合大规模的强化学习任务。此外,Mjx 提供了与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
项目及技术应用场景
Mjx 的应用场景非常广泛,特别适合以下领域:
- 麻将 AI 开发:Mjx 提供了丰富的 API 和高效的模拟环境,是开发和测试麻将 AI 的理想选择。
- 强化学习研究:Mjx 的分布式计算能力和 Gym 风格的 API 使其成为大规模强化学习研究的强大工具。
- 游戏规则验证:Mjx 与 Tenhou 完全兼容,可以用于验证和测试麻将游戏的规则和逻辑。
项目特点
Mjx 的主要特点包括:
- 高性能:比传统模拟器 Mjai 快 100 倍,适合大规模的模拟和评估任务。
- 完全兼容 Tenhou:经过大量 Tenhou 游戏日志的验证,确保规则和结果的准确性。
- Gym-like API:提供类似 Gym 的 API,方便强化学习模型的开发和测试。
- 分布式计算支持:通过 gRPC 实现分布式计算,适合大规模的强化学习和评估。
- Mjai 兼容:提供与 Mjai 兼容的接口,方便已有项目的迁移和扩展。
- 美观的可视化:提供美观的游戏可视化界面,方便观察和分析游戏过程。
快速开始
你可以通过 Google Colab 快速体验 Mjx:
安装
Mjx 支持 Python3.7 及以上版本,目前支持 Linux 和 macOS Intel(10.15 或更高版本)。你可以通过 pip 安装 Mjx:
$ pip install mjx
示例代码
以下是一个简单的示例代码,展示了如何使用 Mjx 进行游戏模拟:
import mjx
from mjx.agents import RandomAgent
agent = RandomAgent()
env = mjx.MjxEnv()
obs_dict = env.reset()
while not env.done():
actions = {player_id: agent.act(obs) for player_id, obs in obs_dict.items()}
obs_dict = env.step(actions)
returns = env.rewards()
服务器使用
Mjx 支持通过 gRPC 进行分布式计算,以下是一个简单的服务器和客户端示例:
| 服务器 | 客户端 |
|---|---|
|
|
注意事项
Mjx 目前仍在积极开发中,API 可能会在 v1.0 之前发生变化。特别是以下几个方面:
env.rewards(reward_type)和env.done(done_type)的默认行为- Protobuf 模式
- 特征提取 API(目前由
Observation.to_features()提供)
如何开发
我们建议在容器中开发 Mjx,最简单的方法是通过 VsCode 打开此仓库。如果你有任何问题,欢迎联系 @sotetsuk。
引用
如果你在研究中使用了 Mjx,请引用以下文献:
@INPROCEEDINGS{mjx2022,
author={Koyamada, Sotetsu and Habara, Keigo and Goto, Nao and Okano, Shinri and Nishimori, Soichiro and Ishii, Shin},
booktitle={2022 IEEE Conference on Games (CoG)},
title={Mjx: A framework for Mahjong AI research},
year={2022},
volume={},
number={},
pages={504-507},
doi={10.1109/CoG51982.2022.9893712}}
许可证
Mjx 采用 MIT 许可证。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
282
2.58 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
224
303
Ascend Extension for PyTorch
Python
109
139
暂无简介
Dart
571
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
170
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
304
40