Ax项目中多任务多目标优化的Pareto最优参数获取方法
2025-07-01 12:21:57作者:尤辰城Agatha
背景介绍
在基于Ax框架进行多任务多目标优化(Multi-Task Multi-Objective Optimization)时,开发者经常需要获取Pareto最优参数集。Pareto最优解是指在多目标优化问题中,无法在不损害至少一个其他目标的情况下改进任何一个目标的解集。然而,在Ax框架的当前版本中,对于多任务场景下的Pareto最优参数获取支持尚不完善。
问题分析
当尝试使用ax_client.get_pareto_optimal_parameters()
方法获取多任务多目标优化问题的Pareto最优解时,会遇到一个关键错误:"StratifiedStandardizeY requires task to be fixed here"。这个错误源于Ax框架内部转换层的一个限制——在进行目标值反转换时,需要明确指定任务特征。
具体来说,问题出现在以下方面:
- 多任务模型需要知道当前是针对哪个任务获取Pareto前沿
- 标准转换层
StratifiedStandardizeY
需要固定的任务特征才能正确工作 - 当前的API设计没有提供传递任务特征的接口
临时解决方案
在Ax框架官方提供完整支持前,开发者可以采用以下临时解决方案:
def get_pareto_optimal_solutions(df, task="A"):
"""自定义函数获取指定任务的Pareto最优解
参数:
df: 包含所有试验数据的DataFrame
task: 要分析的任务标识
返回:
包含(参数字典, 目标值字典)元组的列表
"""
# 筛选指定任务的数据
task_data = df[df["task"] == task]
# 提取目标值列
objectives = task_data.iloc[:, 4:6].values
# 计算Pareto最优解
is_pareto = ~np.any(np.all(objectives[:, None] > objectives, axis=2), axis=1)
pareto_solutions = task_data[is_pareto]
# 格式化返回结果
return [
(
dict(row[df.columns[6:-1]]), # 参数部分
dict(row[df.columns[4:6]]) # 目标值部分
)
for _, row in pareto_solutions.iterrows()
]
这个自定义函数实现了:
- 按任务筛选试验数据
- 计算该任务下的Pareto前沿
- 返回格式化的参数和目标值组合
未来展望
根据Ax开发团队的规划,未来版本将会重构最佳点计算工具,预期将提供更好的多任务和多保真度场景支持。届时开发者将能够直接使用内置API获取多任务场景下的Pareto最优解,而无需自定义实现。
实践建议
对于当前需要使用多任务多目标优化的开发者,建议:
- 对于简单场景,可以使用上述自定义函数临时解决问题
- 对于复杂场景,可以考虑修改Ax源码中的最佳点计算工具
- 关注Ax的版本更新,及时迁移到官方支持的API
多任务多目标优化是一个复杂但强大的工具,合理使用可以显著提高实验效率。虽然当前框架存在一些限制,但通过适当的变通方法,仍然可以实现所需功能。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0134AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
JavaWeb企业门户网站源码 - 企业级门户系统开发指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 WebVideoDownloader:高效网页视频抓取工具全面使用指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.31 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
76

React Native鸿蒙化仓库
JavaScript
216
290

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
991
587

Ascend Extension for PyTorch
Python
74
103

仓颉编程语言测试用例。
Cangjie
34
60

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401