Jina AI 3.24.0版本发布:Executor新增Provider端点映射功能
Jina AI作为一款开源的神经搜索框架,在最新发布的3.24.0版本中引入了一项重要的新特性——支持在Jina Executor中配置Provider端点映射。这项功能为开发者提供了更灵活的云端服务集成方案,特别是在与AWS SageMaker等云服务集成时尤为实用。
功能详解
在分布式计算和云原生应用场景中,我们经常需要将本地开发的Executor部署到云端服务上运行。新版本通过引入--provider-endpoint
标志,实现了Executor端点与云服务端点的灵活映射。
具体来说,开发者现在可以使用以下组合参数:
--provider SAGEMAKER
:指定使用AWS SageMaker作为服务提供商--provider-endpoint <named endpoint>
:将SageMaker的invocations
端点映射到Executor的指定端点
技术实现原理
在底层实现上,Jina框架新增了端点映射机制。当Executor部署到SageMaker时,框架会自动建立以下关联:
- SageMaker的标准
invocations
端点接收外部请求 - 根据
--provider-endpoint
参数配置,将请求路由到Executor的指定端点 - Executor处理完成后,响应沿原路径返回
这种设计保持了Jina原有的执行流程,同时增加了与云服务的兼容性,使得开发者无需修改业务逻辑代码就能将Executor部署到云端。
使用场景示例
假设我们开发了一个多功能的NLP Executor,包含以下端点:
/encode
:用于文本向量化/classify
:用于文本分类/summarize
:用于文本摘要
现在我们可以选择性地将某个功能部署到SageMaker。例如,如果只需要将文本分类功能放到云端,可以使用:
--provider SAGEMAKER --provider-endpoint /classify
这样配置后,SageMaker服务将专门处理文本分类请求,而其他功能仍可在本地或其他环境运行。
开发者价值
这项更新为开发者带来了几个重要优势:
- 灵活部署:可以按需选择将Executor的特定功能部署到云端,而不是全量部署
- 成本优化:只将计算密集型任务放到云端,节省资源使用成本
- 平滑迁移:现有Executor代码几乎无需修改即可支持云端部署
- 混合架构:支持部分功能云端、部分功能本地的混合部署模式
未来展望
虽然当前版本仅支持AWS SageMaker作为provider,但这一功能的架构设计为未来支持更多云服务提供商奠定了基础。我们可以预见,后续版本可能会加入对其他主流云平台的支持,如Google Cloud AI Platform、Azure Machine Learning等,进一步丰富Jina的云集成能力。
对于需要将AI模型服务部署到生产环境的企业用户,3.24.0版本提供的这一特性无疑是一个值得关注的重要更新。它不仅简化了云部署流程,还为构建混合云架构的AI应用提供了新的可能性。
- DDeepSeek-V3.1-TerminusDeepSeek-V3.1-Terminus是V3的更新版,修复语言问题,并优化了代码与搜索智能体性能。Python00
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0268cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AudioFly
AudioFly is a text-to-audio generation model based on the LDM architecture. It produces high-fidelity sounds at 44.1 kHz sampling rate with strong alignment to text prompts, suitable for sound effects, music, and multi-event audio synthesis tasks.Python00- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









