Scanpy中rank_genes_groups_dotplot与filter_rank_genes_groups的配合使用问题解析
在使用Scanpy进行单细胞数据分析时,我们经常会用到差异基因分析功能。其中rank_genes_groups和filter_rank_genes_groups是两个常用的函数,而rank_genes_groups_dotplot则用于可视化差异基因结果。然而在实际使用中,用户可能会遇到一些兼容性问题。
问题现象
当用户尝试使用rank_genes_groups_dotplot可视化经过filter_rank_genes_groups筛选后的结果时,可能会遇到以下错误提示:
ValueError: Please run `sc.tl.rank_genes_groups` with 'n_genes=adata.shape[1]' to save all gene scores. Currently, only 2238 are found
这个错误通常发生在尝试绘制log fold change值(通过设置values_to_plot="logfoldchanges")时。
问题根源
这个问题的根本原因在于filter_rank_genes_groups函数的工作原理。该函数会对原始的差异基因分析结果进行筛选,只保留满足条件的基因。然而,当用户后续想要绘制log fold change等统计量时,这些统计量可能已经被过滤掉了,导致绘图函数无法找到所需的数据。
解决方案
要解决这个问题,有以下几种方法:
-
在原始分析中保留所有基因: 在运行
rank_genes_groups时,设置参数n_genes=adata.shape[1],这样可以确保所有基因的统计量都被保存下来,即使后续进行筛选也能保留完整数据。 -
使用正确的key参数: 当使用
filter_rank_genes_groups后,结果会保存在一个新的key中(默认为原始key加上"_filtered"后缀)。在绘图时需要明确指定这个key,例如:sc.pl.rank_genes_groups_dotplot(adata, key='rank_genes_groups_filtered') -
避免在筛选后绘制被过滤的统计量: 如果某些统计量在筛选过程中被移除了,可以考虑绘制其他可用的统计量,或者重新运行分析时保留完整数据。
最佳实践建议
-
在进行差异基因分析时,如果预计后续需要绘制各种统计量,建议初始分析时就保留所有基因的信息:
sc.tl.rank_genes_groups(adata, groupby='leiden', n_genes=adata.shape[1]) -
筛选差异基因后,明确知道哪些信息是可用的。
filter_rank_genes_groups主要基于p值和log fold change进行筛选,但不会删除这些统计量本身。 -
当遇到绘图问题时,检查
adata.uns中相应key下的数据结构,确认所需的数据是否存在。
通过理解这些函数之间的交互方式和数据存储结构,用户可以更灵活地使用Scanpy进行差异基因分析和可视化。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00