Scanpy中rank_genes_groups_dotplot与filter_rank_genes_groups的配合使用问题解析
在使用Scanpy进行单细胞数据分析时,我们经常会用到差异基因分析功能。其中rank_genes_groups和filter_rank_genes_groups是两个常用的函数,而rank_genes_groups_dotplot则用于可视化差异基因结果。然而在实际使用中,用户可能会遇到一些兼容性问题。
问题现象
当用户尝试使用rank_genes_groups_dotplot可视化经过filter_rank_genes_groups筛选后的结果时,可能会遇到以下错误提示:
ValueError: Please run `sc.tl.rank_genes_groups` with 'n_genes=adata.shape[1]' to save all gene scores. Currently, only 2238 are found
这个错误通常发生在尝试绘制log fold change值(通过设置values_to_plot="logfoldchanges")时。
问题根源
这个问题的根本原因在于filter_rank_genes_groups函数的工作原理。该函数会对原始的差异基因分析结果进行筛选,只保留满足条件的基因。然而,当用户后续想要绘制log fold change等统计量时,这些统计量可能已经被过滤掉了,导致绘图函数无法找到所需的数据。
解决方案
要解决这个问题,有以下几种方法:
-
在原始分析中保留所有基因: 在运行
rank_genes_groups时,设置参数n_genes=adata.shape[1],这样可以确保所有基因的统计量都被保存下来,即使后续进行筛选也能保留完整数据。 -
使用正确的key参数: 当使用
filter_rank_genes_groups后,结果会保存在一个新的key中(默认为原始key加上"_filtered"后缀)。在绘图时需要明确指定这个key,例如:sc.pl.rank_genes_groups_dotplot(adata, key='rank_genes_groups_filtered') -
避免在筛选后绘制被过滤的统计量: 如果某些统计量在筛选过程中被移除了,可以考虑绘制其他可用的统计量,或者重新运行分析时保留完整数据。
最佳实践建议
-
在进行差异基因分析时,如果预计后续需要绘制各种统计量,建议初始分析时就保留所有基因的信息:
sc.tl.rank_genes_groups(adata, groupby='leiden', n_genes=adata.shape[1]) -
筛选差异基因后,明确知道哪些信息是可用的。
filter_rank_genes_groups主要基于p值和log fold change进行筛选,但不会删除这些统计量本身。 -
当遇到绘图问题时,检查
adata.uns中相应key下的数据结构,确认所需的数据是否存在。
通过理解这些函数之间的交互方式和数据存储结构,用户可以更灵活地使用Scanpy进行差异基因分析和可视化。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C079
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00