Robusta KRR资源推荐器的时间窗口配置与实现原理
2025-06-28 06:58:17作者:羿妍玫Ivan
概述
Robusta作为一款Kubernetes监控与自动化工具,其内置的KRR(Kubernetes Resource Recommender)组件能够基于历史资源使用情况为工作负载提供资源请求(Requests)和限制(Limits)的优化建议。本文将深入解析KRR的工作原理,特别是其数据处理时间窗口的配置机制。
KRR默认时间窗口分析
在Robusta的默认配置中,KRR会分析过去14天的资源使用数据来生成推荐值。这一设计考虑到了工作负载可能存在的周期性变化(如工作日/周末差异),通过较长时间跨度的数据分析可以得出更准确的建议。
值得注意的是,这一14天的分析窗口适用于所有用户,包括免费版用户。这与Robusta平台的其他功能(如指标图表仅显示最近6小时数据)的限制有所不同。
时间窗口配置方法
用户可以通过修改Helm values文件来自定义KRR的分析时间窗口。主要配置参数包括:
krr:
prometheus:
# 设置查询的时间范围(单位:天)
timeframe_days: 14
# 设置查询的步长(单位:秒)
step: 3600
调整这些参数时需要考虑以下技术因素:
- 更长的分析窗口需要Prometheus存储更长时间的历史数据
- 过短的步长可能导致查询性能问题
- 分析窗口应覆盖工作负载的完整业务周期
与Prometheus存储的关联性
KRR本身不存储任何指标数据,完全依赖Prometheus作为数据源。这意味着:
- KRR能分析的时间范围受限于Prometheus的存储保留期
- 如果Prometheus只保留7天数据,即使KRR配置为14天窗口,实际也只能分析7天数据
- 数据精度同样受Prometheus的采集间隔和存储配置影响
最佳实践建议
- 对于生产环境,建议Prometheus至少保留30天数据
- 典型配置组合:
- Prometheus保留期:30天
- KRR分析窗口:14-21天
- 查询步长:1小时(3600秒)
- 对于有明显周期性变化的工作负载,分析窗口应至少覆盖2个完整周期
- 在资源调整后,建议观察1-2个周期再评估效果
实现原理深度解析
KRR的核心算法基于统计学方法分析历史数据:
- 从Prometheus获取CPU/内存使用率时间序列
- 计算百分位数(通常使用95th或99th)
- 考虑一定的缓冲余量(通常10-20%)
- 生成最终的Requests建议值
这种方法的优势在于:
- 自动适应工作负载变化
- 避免基于峰值配置导致的资源浪费
- 通过统计方法平滑异常值影响
总结
Robusta的KRR组件通过智能分析历史资源使用数据,帮助用户优化Kubernetes资源配置。理解其时间窗口配置机制以及与Prometheus的协作关系,对于获得准确的推荐结果至关重要。合理配置这些参数可以在资源利用率和应用稳定性之间取得最佳平衡。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
25