Robusta KRR资源推荐器的时间窗口配置与实现原理
2025-06-28 19:44:41作者:羿妍玫Ivan
概述
Robusta作为一款Kubernetes监控与自动化工具,其内置的KRR(Kubernetes Resource Recommender)组件能够基于历史资源使用情况为工作负载提供资源请求(Requests)和限制(Limits)的优化建议。本文将深入解析KRR的工作原理,特别是其数据处理时间窗口的配置机制。
KRR默认时间窗口分析
在Robusta的默认配置中,KRR会分析过去14天的资源使用数据来生成推荐值。这一设计考虑到了工作负载可能存在的周期性变化(如工作日/周末差异),通过较长时间跨度的数据分析可以得出更准确的建议。
值得注意的是,这一14天的分析窗口适用于所有用户,包括免费版用户。这与Robusta平台的其他功能(如指标图表仅显示最近6小时数据)的限制有所不同。
时间窗口配置方法
用户可以通过修改Helm values文件来自定义KRR的分析时间窗口。主要配置参数包括:
krr:
prometheus:
# 设置查询的时间范围(单位:天)
timeframe_days: 14
# 设置查询的步长(单位:秒)
step: 3600
调整这些参数时需要考虑以下技术因素:
- 更长的分析窗口需要Prometheus存储更长时间的历史数据
- 过短的步长可能导致查询性能问题
- 分析窗口应覆盖工作负载的完整业务周期
与Prometheus存储的关联性
KRR本身不存储任何指标数据,完全依赖Prometheus作为数据源。这意味着:
- KRR能分析的时间范围受限于Prometheus的存储保留期
- 如果Prometheus只保留7天数据,即使KRR配置为14天窗口,实际也只能分析7天数据
- 数据精度同样受Prometheus的采集间隔和存储配置影响
最佳实践建议
- 对于生产环境,建议Prometheus至少保留30天数据
- 典型配置组合:
- Prometheus保留期:30天
- KRR分析窗口:14-21天
- 查询步长:1小时(3600秒)
- 对于有明显周期性变化的工作负载,分析窗口应至少覆盖2个完整周期
- 在资源调整后,建议观察1-2个周期再评估效果
实现原理深度解析
KRR的核心算法基于统计学方法分析历史数据:
- 从Prometheus获取CPU/内存使用率时间序列
- 计算百分位数(通常使用95th或99th)
- 考虑一定的缓冲余量(通常10-20%)
- 生成最终的Requests建议值
这种方法的优势在于:
- 自动适应工作负载变化
- 避免基于峰值配置导致的资源浪费
- 通过统计方法平滑异常值影响
总结
Robusta的KRR组件通过智能分析历史资源使用数据,帮助用户优化Kubernetes资源配置。理解其时间窗口配置机制以及与Prometheus的协作关系,对于获得准确的推荐结果至关重要。合理配置这些参数可以在资源利用率和应用稳定性之间取得最佳平衡。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133