OpenVeloLinux内核中的NUMA内存策略深度解析
2025-06-19 06:02:27作者:田桥桑Industrious
什么是NUMA内存策略?
在现代多核处理器系统中,NUMA(非统一内存访问)架构已成为主流设计。OpenVeloLinux内核中的NUMA内存策略机制决定了内核如何在NUMA系统或模拟NUMA系统中分配内存。这一机制自2.6内核时代(约2004年5月)引入,至今仍是优化NUMA系统性能的关键组件。
内存策略与cpuset(一种管理机制)有本质区别:
- cpuset是管理员用来限制进程内存分配节点的机制
- 内存策略则是NUMA感知应用程序可以利用的编程接口
当两者同时应用于任务时,cpuset的限制具有更高优先级。
内存策略的核心概念
策略作用域
Linux内核支持多种作用域的内存策略,按范围从广到窄依次为:
-
系统默认策略:
- 硬编码在内核中
- 控制所有未被更具体策略控制的页面分配
- 系统运行期间默认使用"本地分配"
- 启动阶段则采用跨所有节点的交错分配,避免初始启动节点过载
-
任务/进程策略:
- 每个任务可选的自定义策略
- 控制任务直接或间接发起的所有页面分配
- 具有继承性,通过fork()和exec()传递
- 多线程任务中,策略仅影响安装策略的线程及其后续创建的线程
-
VMA策略:
- 针对任务虚拟地址空间特定范围的策略
- 仅适用于匿名页面(任务栈、堆、MAP_ANONYMOUS映射)
- 在共享地址空间的任务间共享(如线程)
- 支持在已映射区域安装子范围策略(会分割VMA)
-
共享策略:
- 应用于共享内存对象的策略
- 所有映射该对象的任务共享同一策略
- 目前仅支持shmget()或mmap(MAP_ANONYMOUS|MAP_SHARED)创建的共享内存段
策略组成要素
NUMA内存策略由三部分组成:
- 模式(mode):决定策略行为
- 可选模式标志(flags):影响模式行为
- 可选节点集(nodes):策略行为的参数
内核中通过引用计数结构体struct mempolicy实现。
策略模式详解
OpenVeloLinux支持四种基本策略模式:
-
默认模式(MPOL_DEFAULT):
- 表示"回退到下一级更具体的策略"
- 不指定节点集(必须为空)
-
绑定模式(MPOL_BIND):
- 内存必须从策略指定的节点集中分配
- 选择距离分配点最近且有足够内存的节点
-
优先模式(MPOL_PREFERRED):
- 优先从指定节点分配
- 失败时按平台固件提供的距离信息搜索其他节点
- 空节点集表示"始终优先本地分配"
-
交错模式(MPOL_INTERLEAVED):
- 页面粒度跨节点交错分配
- 匿名页和共享内存页:基于页面偏移选择节点
- 页缓存页:基于任务计数器轮询节点
高级模式标志
-
MPOL_F_STATIC_NODES:
- 节点集不随允许节点集变化而重映射
- 仅应用用户节点集与允许节点集的交集
- 不能与MPOL_F_RELATIVE_NODES同时使用
-
MPOL_F_RELATIVE_NODES:
- 节点集相对于允许节点集进行映射
- 保持用户节点集与允许节点集的相对关系
- 同样不能与MPOL_F_STATIC_NODES同时使用
引用计数机制
内存策略结构体使用原子引用计数解决使用/释放竞争问题:
- 初始引用:新策略初始计数为1(安装任务持有)
- 存储引用:策略指针存入其他结构体时增加引用
- 使用场景:
- 策略查询(通过API或/proc接口)
- 页面分配时的策略检查(热路径优化)
优化措施:
- 系统默认策略永不释放,无需引用计数
- 查询时通过mmap_sem读锁保护,避免竞争
- 页面分配时同样受mmap_sem读锁保护
- 共享策略需要特殊处理,确保替换时不会影响使用
实际应用建议
-
应用程序设计:
- 使用MPOL_F_RELATIVE_NODES时,节点集应假设为0到N-1
- 让内核根据实际允许节点集进行重映射
-
性能优化:
- 热路径上尽量减少引用计数原子操作
- 理解不同策略模式的开销特点
-
调试技巧:
- 通过/proc//numa_maps检查策略应用情况
- 注意共享内存区域在不同任务中的VMA配置差异
通过深入理解OpenVeloLinux内核的NUMA内存策略机制,开发者可以更好地优化应用程序在NUMA系统上的内存访问性能,特别是在高性能计算和大数据处理场景中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140