OpenVeloLinux内核中的NUMA内存策略深度解析
2025-06-19 23:48:18作者:田桥桑Industrious
什么是NUMA内存策略?
在现代多核处理器系统中,NUMA(非统一内存访问)架构已成为主流设计。OpenVeloLinux内核中的NUMA内存策略机制决定了内核如何在NUMA系统或模拟NUMA系统中分配内存。这一机制自2.6内核时代(约2004年5月)引入,至今仍是优化NUMA系统性能的关键组件。
内存策略与cpuset(一种管理机制)有本质区别:
- cpuset是管理员用来限制进程内存分配节点的机制
- 内存策略则是NUMA感知应用程序可以利用的编程接口
当两者同时应用于任务时,cpuset的限制具有更高优先级。
内存策略的核心概念
策略作用域
Linux内核支持多种作用域的内存策略,按范围从广到窄依次为:
-
系统默认策略:
- 硬编码在内核中
- 控制所有未被更具体策略控制的页面分配
- 系统运行期间默认使用"本地分配"
- 启动阶段则采用跨所有节点的交错分配,避免初始启动节点过载
-
任务/进程策略:
- 每个任务可选的自定义策略
- 控制任务直接或间接发起的所有页面分配
- 具有继承性,通过fork()和exec()传递
- 多线程任务中,策略仅影响安装策略的线程及其后续创建的线程
-
VMA策略:
- 针对任务虚拟地址空间特定范围的策略
- 仅适用于匿名页面(任务栈、堆、MAP_ANONYMOUS映射)
- 在共享地址空间的任务间共享(如线程)
- 支持在已映射区域安装子范围策略(会分割VMA)
-
共享策略:
- 应用于共享内存对象的策略
- 所有映射该对象的任务共享同一策略
- 目前仅支持shmget()或mmap(MAP_ANONYMOUS|MAP_SHARED)创建的共享内存段
策略组成要素
NUMA内存策略由三部分组成:
- 模式(mode):决定策略行为
- 可选模式标志(flags):影响模式行为
- 可选节点集(nodes):策略行为的参数
内核中通过引用计数结构体struct mempolicy
实现。
策略模式详解
OpenVeloLinux支持四种基本策略模式:
-
默认模式(MPOL_DEFAULT):
- 表示"回退到下一级更具体的策略"
- 不指定节点集(必须为空)
-
绑定模式(MPOL_BIND):
- 内存必须从策略指定的节点集中分配
- 选择距离分配点最近且有足够内存的节点
-
优先模式(MPOL_PREFERRED):
- 优先从指定节点分配
- 失败时按平台固件提供的距离信息搜索其他节点
- 空节点集表示"始终优先本地分配"
-
交错模式(MPOL_INTERLEAVED):
- 页面粒度跨节点交错分配
- 匿名页和共享内存页:基于页面偏移选择节点
- 页缓存页:基于任务计数器轮询节点
高级模式标志
-
MPOL_F_STATIC_NODES:
- 节点集不随允许节点集变化而重映射
- 仅应用用户节点集与允许节点集的交集
- 不能与MPOL_F_RELATIVE_NODES同时使用
-
MPOL_F_RELATIVE_NODES:
- 节点集相对于允许节点集进行映射
- 保持用户节点集与允许节点集的相对关系
- 同样不能与MPOL_F_STATIC_NODES同时使用
引用计数机制
内存策略结构体使用原子引用计数解决使用/释放竞争问题:
- 初始引用:新策略初始计数为1(安装任务持有)
- 存储引用:策略指针存入其他结构体时增加引用
- 使用场景:
- 策略查询(通过API或/proc接口)
- 页面分配时的策略检查(热路径优化)
优化措施:
- 系统默认策略永不释放,无需引用计数
- 查询时通过mmap_sem读锁保护,避免竞争
- 页面分配时同样受mmap_sem读锁保护
- 共享策略需要特殊处理,确保替换时不会影响使用
实际应用建议
-
应用程序设计:
- 使用MPOL_F_RELATIVE_NODES时,节点集应假设为0到N-1
- 让内核根据实际允许节点集进行重映射
-
性能优化:
- 热路径上尽量减少引用计数原子操作
- 理解不同策略模式的开销特点
-
调试技巧:
- 通过/proc//numa_maps检查策略应用情况
- 注意共享内存区域在不同任务中的VMA配置差异
通过深入理解OpenVeloLinux内核的NUMA内存策略机制,开发者可以更好地优化应用程序在NUMA系统上的内存访问性能,特别是在高性能计算和大数据处理场景中。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp论坛排行榜项目中的错误日志规范要求3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中React实验项目的分类修正6 freeCodeCamp课程视频测验中的Tab键导航问题解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511