OpenVeloLinux内核中的NUMA内存策略深度解析
2025-06-19 06:02:27作者:田桥桑Industrious
什么是NUMA内存策略?
在现代多核处理器系统中,NUMA(非统一内存访问)架构已成为主流设计。OpenVeloLinux内核中的NUMA内存策略机制决定了内核如何在NUMA系统或模拟NUMA系统中分配内存。这一机制自2.6内核时代(约2004年5月)引入,至今仍是优化NUMA系统性能的关键组件。
内存策略与cpuset(一种管理机制)有本质区别:
- cpuset是管理员用来限制进程内存分配节点的机制
- 内存策略则是NUMA感知应用程序可以利用的编程接口
当两者同时应用于任务时,cpuset的限制具有更高优先级。
内存策略的核心概念
策略作用域
Linux内核支持多种作用域的内存策略,按范围从广到窄依次为:
-
系统默认策略:
- 硬编码在内核中
- 控制所有未被更具体策略控制的页面分配
- 系统运行期间默认使用"本地分配"
- 启动阶段则采用跨所有节点的交错分配,避免初始启动节点过载
-
任务/进程策略:
- 每个任务可选的自定义策略
- 控制任务直接或间接发起的所有页面分配
- 具有继承性,通过fork()和exec()传递
- 多线程任务中,策略仅影响安装策略的线程及其后续创建的线程
-
VMA策略:
- 针对任务虚拟地址空间特定范围的策略
- 仅适用于匿名页面(任务栈、堆、MAP_ANONYMOUS映射)
- 在共享地址空间的任务间共享(如线程)
- 支持在已映射区域安装子范围策略(会分割VMA)
-
共享策略:
- 应用于共享内存对象的策略
- 所有映射该对象的任务共享同一策略
- 目前仅支持shmget()或mmap(MAP_ANONYMOUS|MAP_SHARED)创建的共享内存段
策略组成要素
NUMA内存策略由三部分组成:
- 模式(mode):决定策略行为
- 可选模式标志(flags):影响模式行为
- 可选节点集(nodes):策略行为的参数
内核中通过引用计数结构体struct mempolicy实现。
策略模式详解
OpenVeloLinux支持四种基本策略模式:
-
默认模式(MPOL_DEFAULT):
- 表示"回退到下一级更具体的策略"
- 不指定节点集(必须为空)
-
绑定模式(MPOL_BIND):
- 内存必须从策略指定的节点集中分配
- 选择距离分配点最近且有足够内存的节点
-
优先模式(MPOL_PREFERRED):
- 优先从指定节点分配
- 失败时按平台固件提供的距离信息搜索其他节点
- 空节点集表示"始终优先本地分配"
-
交错模式(MPOL_INTERLEAVED):
- 页面粒度跨节点交错分配
- 匿名页和共享内存页:基于页面偏移选择节点
- 页缓存页:基于任务计数器轮询节点
高级模式标志
-
MPOL_F_STATIC_NODES:
- 节点集不随允许节点集变化而重映射
- 仅应用用户节点集与允许节点集的交集
- 不能与MPOL_F_RELATIVE_NODES同时使用
-
MPOL_F_RELATIVE_NODES:
- 节点集相对于允许节点集进行映射
- 保持用户节点集与允许节点集的相对关系
- 同样不能与MPOL_F_STATIC_NODES同时使用
引用计数机制
内存策略结构体使用原子引用计数解决使用/释放竞争问题:
- 初始引用:新策略初始计数为1(安装任务持有)
- 存储引用:策略指针存入其他结构体时增加引用
- 使用场景:
- 策略查询(通过API或/proc接口)
- 页面分配时的策略检查(热路径优化)
优化措施:
- 系统默认策略永不释放,无需引用计数
- 查询时通过mmap_sem读锁保护,避免竞争
- 页面分配时同样受mmap_sem读锁保护
- 共享策略需要特殊处理,确保替换时不会影响使用
实际应用建议
-
应用程序设计:
- 使用MPOL_F_RELATIVE_NODES时,节点集应假设为0到N-1
- 让内核根据实际允许节点集进行重映射
-
性能优化:
- 热路径上尽量减少引用计数原子操作
- 理解不同策略模式的开销特点
-
调试技巧:
- 通过/proc//numa_maps检查策略应用情况
- 注意共享内存区域在不同任务中的VMA配置差异
通过深入理解OpenVeloLinux内核的NUMA内存策略机制,开发者可以更好地优化应用程序在NUMA系统上的内存访问性能,特别是在高性能计算和大数据处理场景中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
182
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1