vLLM项目在Intel Xeon平台上的NUMA优化实践
2025-05-02 12:15:37作者:庞队千Virginia
背景介绍
vLLM作为当前流行的大模型推理框架,其CPU后端支持对于没有高端GPU的用户群体尤为重要。近期,在Intel第五代Xeon Platinum 8581C处理器上运行vLLM时,遇到了工作进程异常退出的问题,错误代码为-9(通常表示内存不足)。本文将深入分析这一问题的根源,并探讨在NUMA架构下的优化实践。
问题现象
在配备双路Intel Xeon Platinum 8581C(共120核)的服务器上,尝试运行DeepSeek-R1-Distill-Qwen-32B模型时,vLLM工作进程异常退出。关键现象包括:
- 使用
VLLM_CPU_OMP_THREADS_BIND
绑定线程时出现进程崩溃 - 错误代码为-9(内存不足)
- 调整KV缓存大小无明显改善
硬件架构分析
该服务器采用了独特的8 NUMA节点设计:
- 每个CPU包含60个物理核心
- 系统共120个逻辑处理器
- 内存总量256GB,平均分配到8个NUMA节点,每个节点约32GB
- L3缓存为每CPU 60MB(共120MB)
这种非对称的NUMA设计在HPC和AI工作负载中较为少见,需要特别注意内存分配策略。
问题根源
通过深入分析,发现问题核心在于NUMA内存分配限制:
- 当使用
VLLM_CPU_OMP_THREADS_BIND
绑定线程时,进程只能从绑定线程所在NUMA节点的本地内存分配内存 - 32B模型参数约占用64GB内存
- KV缓存也需要大量内存空间
- 单个NUMA节点32GB的内存容量无法满足需求
解决方案
针对这一特定硬件配置,我们提出了多维度优化方案:
1. 调整Tensor Parallelism配置
增加TP(Tensor Parallelism)数量可以分散内存压力:
- 将TP从2增加到4或8
- 每个TP rank处理更小的模型分片
- 减少单个NUMA节点的内存需求
2. NUMA绑定策略优化
- 确保绑定的线程组位于同一NUMA节点
- 避免跨NUMA节点绑定,防止内存访问性能下降
- 可以尝试
numactl
工具进行更精细的控制
3. 内存参数调优
- 适当降低
VLLM_CPU_KVCACHE_SPACE
- 监控实际内存使用情况,找到最佳平衡点
- 考虑使用内存压缩技术
4. BIOS设置调整
对于可配置的服务器:
- 考虑重新配置NUMA节点数量
- 启用内存交错模式(可能牺牲部分性能)
- 调整内存子系统的电源管理策略
性能优化建议
在解决基础问题后,针对Intel Xeon平台可进一步优化:
- 利用AMX指令集加速矩阵运算
- 启用AVX-512和BF16指令支持
- 优化线程亲和性设置,减少跨NUMA节点访问
- 使用Intel PyTorch扩展优化算子性能
结论
vLLM在复杂NUMA架构上的部署需要特别注意内存分配策略。通过合理的TP配置、NUMA绑定和内存参数调优,即使在非对称NUMA架构上也能实现高效的大模型推理。Intel Xeon平台凭借其高核心数和先进指令集,仍然是CPU推理的重要选择。
对于类似架构的用户,建议:
- 充分了解硬件NUMA拓扑
- 采用渐进式调优策略
- 监控实际资源使用情况
- 平衡计算与内存需求
这种精细化的优化实践不仅适用于vLLM,对于其他内存密集型AI工作负载也具有参考价值。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
507

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
255
299

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5