vLLM项目在Intel Xeon平台上的NUMA优化实践
2025-05-02 11:29:05作者:庞队千Virginia
背景介绍
vLLM作为当前流行的大模型推理框架,其CPU后端支持对于没有高端GPU的用户群体尤为重要。近期,在Intel第五代Xeon Platinum 8581C处理器上运行vLLM时,遇到了工作进程异常退出的问题,错误代码为-9(通常表示内存不足)。本文将深入分析这一问题的根源,并探讨在NUMA架构下的优化实践。
问题现象
在配备双路Intel Xeon Platinum 8581C(共120核)的服务器上,尝试运行DeepSeek-R1-Distill-Qwen-32B模型时,vLLM工作进程异常退出。关键现象包括:
- 使用
VLLM_CPU_OMP_THREADS_BIND绑定线程时出现进程崩溃 - 错误代码为-9(内存不足)
- 调整KV缓存大小无明显改善
硬件架构分析
该服务器采用了独特的8 NUMA节点设计:
- 每个CPU包含60个物理核心
- 系统共120个逻辑处理器
- 内存总量256GB,平均分配到8个NUMA节点,每个节点约32GB
- L3缓存为每CPU 60MB(共120MB)
这种非对称的NUMA设计在HPC和AI工作负载中较为少见,需要特别注意内存分配策略。
问题根源
通过深入分析,发现问题核心在于NUMA内存分配限制:
- 当使用
VLLM_CPU_OMP_THREADS_BIND绑定线程时,进程只能从绑定线程所在NUMA节点的本地内存分配内存 - 32B模型参数约占用64GB内存
- KV缓存也需要大量内存空间
- 单个NUMA节点32GB的内存容量无法满足需求
解决方案
针对这一特定硬件配置,我们提出了多维度优化方案:
1. 调整Tensor Parallelism配置
增加TP(Tensor Parallelism)数量可以分散内存压力:
- 将TP从2增加到4或8
- 每个TP rank处理更小的模型分片
- 减少单个NUMA节点的内存需求
2. NUMA绑定策略优化
- 确保绑定的线程组位于同一NUMA节点
- 避免跨NUMA节点绑定,防止内存访问性能下降
- 可以尝试
numactl工具进行更精细的控制
3. 内存参数调优
- 适当降低
VLLM_CPU_KVCACHE_SPACE - 监控实际内存使用情况,找到最佳平衡点
- 考虑使用内存压缩技术
4. BIOS设置调整
对于可配置的服务器:
- 考虑重新配置NUMA节点数量
- 启用内存交错模式(可能牺牲部分性能)
- 调整内存子系统的电源管理策略
性能优化建议
在解决基础问题后,针对Intel Xeon平台可进一步优化:
- 利用AMX指令集加速矩阵运算
- 启用AVX-512和BF16指令支持
- 优化线程亲和性设置,减少跨NUMA节点访问
- 使用Intel PyTorch扩展优化算子性能
结论
vLLM在复杂NUMA架构上的部署需要特别注意内存分配策略。通过合理的TP配置、NUMA绑定和内存参数调优,即使在非对称NUMA架构上也能实现高效的大模型推理。Intel Xeon平台凭借其高核心数和先进指令集,仍然是CPU推理的重要选择。
对于类似架构的用户,建议:
- 充分了解硬件NUMA拓扑
- 采用渐进式调优策略
- 监控实际资源使用情况
- 平衡计算与内存需求
这种精细化的优化实践不仅适用于vLLM,对于其他内存密集型AI工作负载也具有参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110