快速上手 TensorFlow 版 Faster R-CNN (TFFRCNN)
2024-09-21 01:59:20作者:咎竹峻Karen
1. 项目目录结构及介绍
TFFRCNN 是一个基于 TensorFlow 的 Faster R-CNN 实现,由 CharlesShang 开发,灵感来源于 smallcorgi 和 rbgirshick 的工作。下面简要概述其主要目录结构:
-
data: 包含数据预处理脚本和示例数据。
demodata: 示例数据文件夹。VOCdevkit2007(需自行下载解压后创建的符号链接),用于存放 PASCAL VOC 2007 数据集。
-
experiments:
- 包含各种实验配置文件如
cfgs目录下的 YAML 文件,用于设置网络架构和训练参数。 - 脚本如
scripts用于特定的数据转换任务,例如从 KITTI 格式转到 PASCAL VOC。
- 包含各种实验配置文件如
-
faster_rcnn: 实现 Faster R-CNN 主逻辑的代码,包括训练和预测流程。
-
lib:
- lib: 模块化的 Python 库,每个模块相对独立,便于理解和修改。
- 包括基础运算、ROI 池化、数据层等关键组件。
- lib: 模块化的 Python 库,每个模块相对独立,便于理解和修改。
-
README.md: 项目的主要说明文件,提供了快速入门指南和详细说明。
-
Makefile: 用于编译 Cython 模块和 C++ 操作的 Makefile。
2. 项目的启动文件介绍
-
启动演示程序: 用户可以使用以下命令运行演示,进行对象检测:
cd TFFRCNN python ./faster_rcnn/demo.py --model model_path这里
model_path应替换为你的模型路径,演示将使用预先训练好的 VGG16 模型在 PASCAL VOC 2007 数据集上的检测结果。 -
训练新模型: 训练端到端 Faster R-CNN 需执行以下命令:
python ./faster_rcnn/train_net.py \ --gpu 0 \ --weights /path/to/VGG_imagenet.npy \ --imdb voc_2007_trainval \ --iters 70000 \ --cfg experiments/cfgs/faster_rcnn_end2end.yml \ --network VGGnet_train
3. 项目的配置文件介绍
配置文件主要位于 experiments/cfgs 目录下,如 faster_rcnn_end2end.yml。这些 YAML 文件包含了训练和测试的关键参数,比如:
- GPU选择: 指定用于训练的GPU编号。
- 权重要素: 预训练权重文件的位置,通常指向 ImageNet 上预训练的模型。
- IMDB数据: 使用的训练和验证数据集名称,如
voc_2007_trainval对应于 PASCAL VOC 2007。 - 迭代次数: (
--iters) 训练过程中网络迭代的总步数。 - 网络配置: 如
VGGnet_train指定了使用的网络架构。 - 其他配置项: 包括学习率策略、正则化参数、是否使用多尺度训练等。
配置文件允许用户灵活地调整实验设置,以适应不同的需求或研究目的。在开始任何实验之前,仔细审查并可能修改这些配置是至关重要的步骤。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868