TFFRCNN 开源项目使用教程
2024-09-16 16:59:27作者:牧宁李
1. 项目介绍
TFFRCNN 是一个基于 TensorFlow 的 Faster RCNN 实现。该项目主要基于 smallcorgi 和 rbgirshick 的工作,旨在提供一个易于理解和修改的 Faster RCNN 实现。Faster RCNN 是一种用于目标检测的深度学习模型,能够在图像中检测出多个目标并给出其边界框。
主要特点
- ResNet 支持:支持 ResNet 网络结构。
- KITTI 数据集支持:支持 KITTI 目标检测数据集。
- 位置敏感 ROI 池化:支持 Position Sensitive ROI Pooling (psroi_pooling)。
- 数据增强:支持数据增强技术。
- PVANet 支持:支持 PVANet 网络结构。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了以下软件和库:
- TensorFlow
- Python 3.x
- Cython
- OpenCV
- easydict
2.2 克隆项目
git clone https://github.com/CharlesShang/TFFRCNN.git
cd TFFRCNN
2.3 编译 Cython 模块
cd lib
make
2.4 运行演示
下载预训练模型并放置在指定路径后,运行以下命令启动演示:
cd ../
python ./faster_rcnn/demo.py --model model_path
3. 应用案例和最佳实践
3.1 在 Pascal VOC 2007 数据集上训练
-
下载 Pascal VOC 2007 数据集并解压到
VOCdevkit
目录。 -
创建符号链接:
cd data ln -s $VOCdevkit VOCdevkit2007
-
下载预训练模型并放置在
./data/pretrain_model/
目录。 -
运行训练脚本:
python ./faster_rcnn/train_net.py --gpu 0 --weights ./data/pretrain_model/VGG_imagenet.npy --imdb voc_2007_trainval --iters 70000 --cfg ./experiments/cfgs/faster_rcnn_end2end.yml --network VGGnet_train --set EXP_DIR exp_dir
3.2 在 KITTI 数据集上训练
-
下载 KITTI 数据集并解压到
./data/KITTI
目录。 -
将 KITTI 数据集转换为 Pascal VOC 格式:
python ./experiments/scripts/kitti2pascalvoc.py --kitti ./data/KITTI --out ./data/KITTIVOC
-
运行训练脚本:
python ./faster_rcnn/train_net.py --gpu 0 --weights ./data/pretrain_model/VGG_imagenet.npy --imdb kittivoc_train --iters 160000 --cfg ./experiments/cfgs/faster_rcnn_kitti.yml --network VGGnet_train
4. 典型生态项目
4.1 TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛用于深度学习模型的开发和训练。TFFRCNN 项目基于 TensorFlow 实现,充分利用了其强大的计算能力和灵活的 API。
4.2 KITTI 数据集
KITTI 数据集是一个用于自动驾驶和计算机视觉研究的目标检测数据集。TFFRCNN 项目支持 KITTI 数据集,使得开发者可以在实际应用场景中进行目标检测模型的训练和评估。
4.3 Pascal VOC 数据集
Pascal VOC 数据集是一个广泛使用的目标检测基准数据集。TFFRCNN 项目支持 Pascal VOC 2007 数据集,开发者可以在此数据集上进行模型的训练和测试。
通过以上步骤,你可以快速上手 TFFRCNN 项目,并在不同的数据集上进行目标检测模型的训练和应用。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX01PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython08
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
51
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
97
155

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
112
253

React Native鸿蒙化仓库
C++
138
222

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
659
441

轻量级、语义化、对开发者友好的 golang 时间处理库
Go
8
2

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
301
1.03 K

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
17
33

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
514
43

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
702
97