SikuBERT 项目使用教程
2024-08-16 05:07:03作者:宣海椒Queenly
项目介绍
SikuBERT 是一个面向数字人文和古典中文信息处理的预训练语言模型。该项目基于 BERT 结构,结合大量古文语料库进行训练,旨在为古文自动处理提供预训练模型。SikuBERT 由南京农业大学开发,并在 GitHub 上开源。
项目快速启动
安装依赖
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装必要的 Python 包:
pip install transformers
加载预训练模型
使用 Huggingface Transformers 库可以直接在线获取 SikuBERT 模型。以下是一个简单的代码示例,展示如何加载和使用 SikuBERT 模型:
from transformers import AutoTokenizer, AutoModel
# 加载 tokenizer 和 model
tokenizer = AutoTokenizer.from_pretrained("SIKU-BERT/sikubert")
model = AutoModel.from_pretrained("SIKU-BERT/sikubert")
# 示例文本
text = "古文处理示例"
# 编码文本
inputs = tokenizer(text, return_tensors="pt")
# 模型推理
outputs = model(**inputs)
# 输出结果
print(outputs)
应用案例和最佳实践
古文自动标注
SikuBERT 可以用于古文自动标注任务,如人名、地名和时间等实体的识别。以下是一个简单的应用案例:
from transformers import pipeline
# 创建命名实体识别 (NER) 管道
ner = pipeline("ner", model="SIKU-BERT/sikubert", tokenizer="SIKU-BERT/sikubert")
# 示例文本
text = "李白是唐代著名诗人。"
# 进行 NER 识别
results = ner(text)
# 输出结果
print(results)
古文翻译
SikuBERT 还可以用于古文翻译任务。虽然它主要针对古文处理,但也可以尝试用于翻译任务:
from transformers import pipeline
# 创建翻译管道
translator = pipeline("translation_zh_to_en", model="SIKU-BERT/sikubert", tokenizer="SIKU-BERT/sikubert")
# 示例文本
text = "床前明月光,疑是地上霜。"
# 进行翻译
results = translator(text)
# 输出结果
print(results)
典型生态项目
SikuGPT2
SikuGPT2 是一个基于 SikuBERT 的古文生成模型,可以用于生成古文文本和古诗词。项目地址:SikuGPT2
SikuGPT2-poem
SikuGPT2-poem 是专门用于生成古诗词的模型。项目地址:SikuGPT2-poem
这些生态项目与 SikuBERT 结合使用,可以进一步扩展古文信息处理的应用场景。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
775
192
Ascend Extension for PyTorch
Python
343
407
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
250