PonyGE2 项目使用教程
2024-09-24 07:22:20作者:廉皓灿Ida
1. 项目目录结构及介绍
PonyGE2 项目的目录结构如下:
PonyGE2/
├── datasets/
├── grammars/
├── parameters/
├── seeds/
├── src/
│ ├── ponyge.py
│ └── ...
├── .gitignore
├── CONTRIBUTORS.md
├── LICENSE
├── README.md
└── requirements.txt
目录介绍
- datasets/: 存放数据集文件。
- grammars/: 存放语法文件,用于定义生成程序的结构。
- parameters/: 存放参数配置文件。
- seeds/: 存放种子文件,用于初始化随机数生成器。
- src/: 源代码目录,包含主要的 Python 脚本。
- ponyge.py: 项目的启动文件。
- .gitignore: Git 忽略文件配置。
- CONTRIBUTORS.md: 贡献者列表。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- requirements.txt: 项目依赖库列表。
2. 项目启动文件介绍
启动文件:src/ponyge.py
ponyge.py 是 PonyGE2 项目的启动文件,用于运行 Grammatical Evolution (GE) 算法。通过该文件,用户可以执行默认的回归问题示例,也可以通过命令行参数自定义运行配置。
基本使用方法
$ cd src
$ python ponyge.py
此命令将运行默认的回归问题示例,并在当前目录下生成一个 results 文件夹,包含运行结果、统计数据、图表和最佳个体信息。
详细输出模式
$ cd src
$ python ponyge.py --verbose
在详细输出模式下,每一代的进化过程都会在命令行中打印出来,显示当前运行的统计数据。
查看所有可用参数
$ python ponyge.py --help
此命令将列出所有可用的命令行参数,用户可以根据需要进行配置。
3. 项目配置文件介绍
配置文件:parameters/ 目录
parameters/ 目录下存放了多个配置文件,用于定义 PonyGE2 运行时的各种参数。每个配置文件通常包含以下内容:
- 算法参数: 如种群大小、进化代数、选择策略等。
- 语法文件路径: 指定使用的语法文件。
- 数据集路径: 指定使用的数据集文件。
- 输出路径: 指定结果输出目录。
示例配置文件
# parameters/example.txt
--POPULATION_SIZE 500
--GENERATIONS 100
--GRAMMAR_FILE grammars/regression.txt
--DATASET_FILE datasets/regression_data.csv
--OUTPUT_PATH results/example_run
用户可以根据需要编辑这些配置文件,或者创建新的配置文件来满足不同的实验需求。
依赖库配置:requirements.txt
requirements.txt 文件列出了 PonyGE2 项目所需的所有 Python 依赖库,包括 matplotlib, numpy, scipy, scikit-learn, pandas 等。用户可以通过以下命令安装这些依赖库:
$ pip install -r requirements.txt
或者使用 Anaconda 来满足所有依赖需求。
通过以上内容,用户可以了解 PonyGE2 项目的目录结构、启动文件的使用方法以及配置文件的设置方式。希望这份教程能帮助用户顺利使用 PonyGE2 进行 Grammatical Evolution 的研究和实验。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
194
212