PonyGE2 项目使用教程
2024-09-24 10:31:15作者:廉皓灿Ida
1. 项目目录结构及介绍
PonyGE2 项目的目录结构如下:
PonyGE2/
├── datasets/
├── grammars/
├── parameters/
├── seeds/
├── src/
│ ├── ponyge.py
│ └── ...
├── .gitignore
├── CONTRIBUTORS.md
├── LICENSE
├── README.md
└── requirements.txt
目录介绍
- datasets/: 存放数据集文件。
- grammars/: 存放语法文件,用于定义生成程序的结构。
- parameters/: 存放参数配置文件。
- seeds/: 存放种子文件,用于初始化随机数生成器。
- src/: 源代码目录,包含主要的 Python 脚本。
- ponyge.py: 项目的启动文件。
- .gitignore: Git 忽略文件配置。
- CONTRIBUTORS.md: 贡献者列表。
- LICENSE: 项目许可证文件。
- README.md: 项目介绍和使用说明。
- requirements.txt: 项目依赖库列表。
2. 项目启动文件介绍
启动文件:src/ponyge.py
ponyge.py 是 PonyGE2 项目的启动文件,用于运行 Grammatical Evolution (GE) 算法。通过该文件,用户可以执行默认的回归问题示例,也可以通过命令行参数自定义运行配置。
基本使用方法
$ cd src
$ python ponyge.py
此命令将运行默认的回归问题示例,并在当前目录下生成一个 results 文件夹,包含运行结果、统计数据、图表和最佳个体信息。
详细输出模式
$ cd src
$ python ponyge.py --verbose
在详细输出模式下,每一代的进化过程都会在命令行中打印出来,显示当前运行的统计数据。
查看所有可用参数
$ python ponyge.py --help
此命令将列出所有可用的命令行参数,用户可以根据需要进行配置。
3. 项目配置文件介绍
配置文件:parameters/ 目录
parameters/ 目录下存放了多个配置文件,用于定义 PonyGE2 运行时的各种参数。每个配置文件通常包含以下内容:
- 算法参数: 如种群大小、进化代数、选择策略等。
- 语法文件路径: 指定使用的语法文件。
- 数据集路径: 指定使用的数据集文件。
- 输出路径: 指定结果输出目录。
示例配置文件
# parameters/example.txt
--POPULATION_SIZE 500
--GENERATIONS 100
--GRAMMAR_FILE grammars/regression.txt
--DATASET_FILE datasets/regression_data.csv
--OUTPUT_PATH results/example_run
用户可以根据需要编辑这些配置文件,或者创建新的配置文件来满足不同的实验需求。
依赖库配置:requirements.txt
requirements.txt 文件列出了 PonyGE2 项目所需的所有 Python 依赖库,包括 matplotlib, numpy, scipy, scikit-learn, pandas 等。用户可以通过以下命令安装这些依赖库:
$ pip install -r requirements.txt
或者使用 Anaconda 来满足所有依赖需求。
通过以上内容,用户可以了解 PonyGE2 项目的目录结构、启动文件的使用方法以及配置文件的设置方式。希望这份教程能帮助用户顺利使用 PonyGE2 进行 Grammatical Evolution 的研究和实验。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
342
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178