Sensitive-Word 项目中英文全匹配校验的优化实践
2025-06-10 04:06:58作者:仰钰奇
背景介绍
在内容过滤系统中,英文单词的精确匹配一直是一个技术难点。许多开发者在使用 Sensitive-Word 项目时,会遇到英文校验不够精确的问题。本文将深入探讨这一问题及其解决方案。
问题现象
开发者在使用 Sensitive-Word 0.14.0 版本时发现,当配置了英文全匹配功能后,系统仍然会将部分非校验词误判为目标词。例如,将"cp"设为目标词后,系统会将"cpm"也错误地标记为目标词。
技术分析
原有实现机制
Sensitive-Word 项目原本提供了WordResultConditions.englishWordMatch()方法来实现英文全匹配功能。其设计初衷是确保英文单词作为独立单元被检测,而不是作为其他单词的一部分。
问题根源
经过深入分析,发现原有实现存在以下不足:
- 单字符处理缺陷:对于单字符英文目标词(如"a"、"I"等),原有逻辑无法正确处理边界情况
- 边界判断不完善:在判断前后字符是否为英文时,逻辑存在不足
- 连续字符处理:对于连续英文单词的识别不够精确
解决方案
自定义匹配条件
开发者通过继承AbstractWordResultCondition类并重写doMatch方法,实现了更精确的英文单词匹配逻辑:
- 前字符检查:确保目标词前一个字符不是英文字母
- 后字符检查:确保目标词后一个字符不是英文字母
- 内容验证:确认当前匹配内容确实为纯英文单词
public class EnglishWordMatch extends AbstractWordResultCondition {
@Override
protected boolean doMatch(IWordResult wordResult, String text,
WordValidModeEnum modeEnum, IWordContext context) {
// 实现细节...
}
}
官方修复
在开发者反馈后,项目维护者在v0.19.1版本中正式修复了这一问题。新版本改进了:
- 单字符英文目标词的处理
- 边界条件的判断逻辑
- 整体匹配精确度
最佳实践
对于需要使用英文内容过滤的场景,建议:
- 版本选择:使用v0.19.1及以上版本
- 配置方式:根据实际需求选择内置的
englishWordMatch或自定义实现 - 测试验证:特别关注单字符和边界情况的测试用例
总结
英文内容过滤的精确匹配是一个需要特别关注的技术点。通过这次问题分析和解决过程,我们不仅理解了Sensitive-Word项目的内部机制,也学习到了如何根据实际需求进行定制化开发。这种问题驱动的技术演进方式,正是开源项目不断完善的动力源泉。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
209
221
暂无简介
Dart
646
149
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
288
React Native鸿蒙化仓库
JavaScript
250
318
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
863
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
215
仓颉编程语言运行时与标准库。
Cangjie
136
874