深度不平衡回归实战指南:基于`imbalanced-regression`
2024-09-22 11:18:49作者:戚魁泉Nursing
一、项目目录结构及介绍
开源项目imbalanced-reggression位于GitHub,其核心目标是解决深度学习在处理不平衡连续目标数据时面临的挑战。以下是项目的基本目录结构及其简介:
-
根目录:
LICENSE: 许可证文件,声明了该项目遵循MIT许可证。README.md: 主要的说明文档,包含了项目概述、论文信息、主要技术点和如何使用的快速引导。gitignore: 忽略文件列表,通常包括编译产物和IDE配置文件等。
-
子目录:
- 各数据集相关的子目录(例如
agedb-dir,imdb-wiki-dir,nyud2-dir,sts-b-dir):这些目录分别对应不同的数据集,内部包含对应的模型训练、数据预处理和评估脚本。 fds.py: 实现特征分布平滑(FDS)的代码模块。loss.py: 包含加权MSE损失函数等,用于处理不平衡数据集中的损失计算。utils.py: 辅助工具函数,比如获取标签平滑(LDS)的核窗口函数。
- 各数据集相关的子目录(例如
二、项目的启动文件介绍
本项目没有单一的“启动”文件,而是根据不同的实验或任务分布在各个子目录中。例如,如果你想要开始一个关于IMDB-WIKI年龄预测的任务,你将进入imdb-wiki-dir目录,并查找该目录下的主运行脚本。启动过程通常涉及数据准备、模型初始化、训练循环执行等步骤,具体细节需参照每个子目录内的Readme或示例脚本。
示例启动流程(以任意数据集为例)
-
环境设置:首先确保安装必要的Python库,通常可以通过查看项目的
requirements.txt文件(如果存在的话)来安装依赖。 -
数据准备:进入特定的数据集目录,根据提供的指示下载数据并进行预处理。
-
训练脚本:找到如
train.py或者以训练为目的的脚本,调整配置文件或命令行参数以符合你的需求。 -
执行命令:在终端或命令提示符中执行训练脚本,如可能的形式可能是:
python train.py --config config.yml。
三、项目的配置文件介绍
虽然直接的配置文件示例未在提供内容中详细列出,但可以假设每个子目录下会有相应的配置文件,常见的命名如config.yml或.ini。配置文件通常包含以下关键部分:
- 模型设置:定义模型的类型、超参数,如隐藏层大小、激活函数等。
- 训练参数:包括批次大小(batch size)、学习率(lr)、训练轮次(epochs)等。
- 数据路径:指定训练和验证数据的位置。
- 优化器:选择的优化算法及其参数,如Adam、SGD的细节。
- 损失函数:使用的损失函数配置,特别是对于不平衡数据,可能会有特定的重采样策略或加权方案。
- 平滑技术:应用如LDS(标签分布平滑)、FDS(特征分布平滑)的相关配置。
为了精确配置,你应该参考实际项目中提供的配置文件示例,对相应字段进行调整,以满足特定实验的需求。
通过以上步骤,你可以系统地理解和操作这个旨在处理不平衡回归问题的开源项目。记得,每个子任务或数据集可能有自己的特性和最佳实践,详细阅读并理解每个目录下的说明文档是非常重要的。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
暂无简介
Dart
644
149
Ascend Extension for PyTorch
Python
203
219
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
282
React Native鸿蒙化仓库
JavaScript
249
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
631
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
77
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873