开源项目 imbalanced-regression 使用教程
项目介绍
imbalanced-regression 是一个用于处理深度不平衡回归问题的开源项目。该项目旨在从具有连续目标的不平衡数据中学习,处理某些目标值可能缺失的问题,并泛化到整个目标范围。项目由 Yuzhe Yang、Kaiwen Zha、Ying-Cong Chen、Hao Wang 和 Dina Katabi 开发,并在 ICML 2021 上发表。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 imbalanced-regression:
pip install git+https://github.com/YyzHarry/imbalanced-regression.git
数据准备
假设你已经有一个不平衡的回归数据集,数据集的格式如下:
import numpy as np
# 示例数据
X = np.random.rand(1000, 10) # 特征矩阵
y = np.random.rand(1000) # 目标值
训练模型
使用 imbalanced-regression 提供的模型进行训练:
from imbalanced_regression import ImbalancedRegressionModel
# 初始化模型
model = ImbalancedRegressionModel(feature_dim=10)
# 训练模型
model.fit(X, y, epochs=10)
# 预测
predictions = model.predict(X)
应用案例和最佳实践
案例1:年龄预测
在计算机视觉任务中,年龄预测是一个典型的不平衡回归问题。使用 imbalanced-regression 可以有效处理数据不平衡问题,提升模型性能。
# 加载年龄数据集
from imbalanced_regression.datasets import load_age_dataset
X, y = load_age_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=20)
案例2:文本相似度评分
在自然语言处理任务中,文本相似度评分也是一个常见的不平衡回归问题。通过 imbalanced-regression,可以更好地处理不同文本之间的相似度评分。
# 加载文本相似度数据集
from imbalanced_regression.datasets import load_text_similarity_dataset
X, y = load_text_similarity_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=15)
典型生态项目
1. PyTorch
imbalanced-regression 基于 PyTorch 框架开发,因此与 PyTorch 生态系统高度兼容。你可以轻松地将 imbalanced-regression 与其他 PyTorch 模型和工具结合使用。
2. Scikit-learn
虽然 imbalanced-regression 主要基于 PyTorch,但它也提供了与 Scikit-learn 兼容的接口,方便用户在现有的 Scikit-learn 工作流中使用。
3. TensorFlow
对于使用 TensorFlow 的用户,imbalanced-regression 提供了一些转换工具,可以将模型转换为 TensorFlow 格式,以便在 TensorFlow 生态系统中使用。
通过以上教程,你应该能够快速上手 imbalanced-regression 项目,并在实际应用中处理不平衡回归问题。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00