开源项目 imbalanced-regression 使用教程
项目介绍
imbalanced-regression 是一个用于处理深度不平衡回归问题的开源项目。该项目旨在从具有连续目标的不平衡数据中学习,处理某些目标值可能缺失的问题,并泛化到整个目标范围。项目由 Yuzhe Yang、Kaiwen Zha、Ying-Cong Chen、Hao Wang 和 Dina Katabi 开发,并在 ICML 2021 上发表。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 imbalanced-regression:
pip install git+https://github.com/YyzHarry/imbalanced-regression.git
数据准备
假设你已经有一个不平衡的回归数据集,数据集的格式如下:
import numpy as np
# 示例数据
X = np.random.rand(1000, 10) # 特征矩阵
y = np.random.rand(1000) # 目标值
训练模型
使用 imbalanced-regression 提供的模型进行训练:
from imbalanced_regression import ImbalancedRegressionModel
# 初始化模型
model = ImbalancedRegressionModel(feature_dim=10)
# 训练模型
model.fit(X, y, epochs=10)
# 预测
predictions = model.predict(X)
应用案例和最佳实践
案例1:年龄预测
在计算机视觉任务中,年龄预测是一个典型的不平衡回归问题。使用 imbalanced-regression 可以有效处理数据不平衡问题,提升模型性能。
# 加载年龄数据集
from imbalanced_regression.datasets import load_age_dataset
X, y = load_age_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=20)
案例2:文本相似度评分
在自然语言处理任务中,文本相似度评分也是一个常见的不平衡回归问题。通过 imbalanced-regression,可以更好地处理不同文本之间的相似度评分。
# 加载文本相似度数据集
from imbalanced_regression.datasets import load_text_similarity_dataset
X, y = load_text_similarity_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=15)
典型生态项目
1. PyTorch
imbalanced-regression 基于 PyTorch 框架开发,因此与 PyTorch 生态系统高度兼容。你可以轻松地将 imbalanced-regression 与其他 PyTorch 模型和工具结合使用。
2. Scikit-learn
虽然 imbalanced-regression 主要基于 PyTorch,但它也提供了与 Scikit-learn 兼容的接口,方便用户在现有的 Scikit-learn 工作流中使用。
3. TensorFlow
对于使用 TensorFlow 的用户,imbalanced-regression 提供了一些转换工具,可以将模型转换为 TensorFlow 格式,以便在 TensorFlow 生态系统中使用。
通过以上教程,你应该能够快速上手 imbalanced-regression 项目,并在实际应用中处理不平衡回归问题。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00