开源项目 imbalanced-regression 使用教程
项目介绍
imbalanced-regression 是一个用于处理深度不平衡回归问题的开源项目。该项目旨在从具有连续目标的不平衡数据中学习,处理某些目标值可能缺失的问题,并泛化到整个目标范围。项目由 Yuzhe Yang、Kaiwen Zha、Ying-Cong Chen、Hao Wang 和 Dina Katabi 开发,并在 ICML 2021 上发表。
项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,通过以下命令安装 imbalanced-regression:
pip install git+https://github.com/YyzHarry/imbalanced-regression.git
数据准备
假设你已经有一个不平衡的回归数据集,数据集的格式如下:
import numpy as np
# 示例数据
X = np.random.rand(1000, 10) # 特征矩阵
y = np.random.rand(1000) # 目标值
训练模型
使用 imbalanced-regression 提供的模型进行训练:
from imbalanced_regression import ImbalancedRegressionModel
# 初始化模型
model = ImbalancedRegressionModel(feature_dim=10)
# 训练模型
model.fit(X, y, epochs=10)
# 预测
predictions = model.predict(X)
应用案例和最佳实践
案例1:年龄预测
在计算机视觉任务中,年龄预测是一个典型的不平衡回归问题。使用 imbalanced-regression 可以有效处理数据不平衡问题,提升模型性能。
# 加载年龄数据集
from imbalanced_regression.datasets import load_age_dataset
X, y = load_age_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=20)
案例2:文本相似度评分
在自然语言处理任务中,文本相似度评分也是一个常见的不平衡回归问题。通过 imbalanced-regression,可以更好地处理不同文本之间的相似度评分。
# 加载文本相似度数据集
from imbalanced_regression.datasets import load_text_similarity_dataset
X, y = load_text_similarity_dataset()
# 训练模型
model = ImbalancedRegressionModel(feature_dim=X.shape[1])
model.fit(X, y, epochs=15)
典型生态项目
1. PyTorch
imbalanced-regression 基于 PyTorch 框架开发,因此与 PyTorch 生态系统高度兼容。你可以轻松地将 imbalanced-regression 与其他 PyTorch 模型和工具结合使用。
2. Scikit-learn
虽然 imbalanced-regression 主要基于 PyTorch,但它也提供了与 Scikit-learn 兼容的接口,方便用户在现有的 Scikit-learn 工作流中使用。
3. TensorFlow
对于使用 TensorFlow 的用户,imbalanced-regression 提供了一些转换工具,可以将模型转换为 TensorFlow 格式,以便在 TensorFlow 生态系统中使用。
通过以上教程,你应该能够快速上手 imbalanced-regression 项目,并在实际应用中处理不平衡回归问题。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00