Galacean引擎中实例化渲染的边界框问题解析
在Galacean引擎开发过程中,使用实例化渲染技术时可能会遇到一个常见但容易被忽视的问题:当相机无法看到第一个实例化模型时,其他所有实例化模型也会消失。这种现象通常与模型的边界框(Bounding Box)设置有关。
问题现象分析
在开发过程中,开发者创建了一个包含100个实例化人物的场景。这些人物通过自定义着色器进行实例化渲染,每个实例的位置通过着色器中的gl_InstanceID
计算得出。然而运行时发现,只有当相机能够看到左下角的第一个人物模型时,其他实例化人物才会正常显示;一旦第一个模型离开视口,所有人物都会消失。
根本原因
经过排查发现,问题的根源在于自定义网格(Mesh)没有正确设置边界框(Bounding Box)。Galacean引擎的视锥体裁切(Frustum Culling)系统依赖于模型的边界框信息来判断模型是否在相机视野内。当自定义网格没有提供边界框时,引擎无法正确判断模型的可见性,导致所有实例化模型都依赖于第一个实例的可见性状态。
解决方案
解决这个问题的关键在于为自定义网格添加适当的边界框信息。以下是具体实现步骤:
-
计算顶点数据的边界范围:首先需要分析顶点位置数据,找出X、Y、Z三个轴上的最小值和最大值。
-
创建边界框对象:使用Galacean引擎提供的
BoundingBox
类,基于计算出的最小和最大值创建边界框。 -
将边界框赋给网格:通过网格的
bounds
属性设置计算好的边界框。
// 计算边界框的最小和最大点
const min = new Vector3(/* 计算出的最小值 */);
const max = new Vector3(/* 计算出的最大值 */);
const bounds = new BoundingBox(min, max);
// 将边界框赋给网格
geometry.bounds = bounds;
技术要点
-
边界框的重要性:边界框不仅用于视锥体裁切,还影响场景的空间划分、碰撞检测等功能的正确性。
-
实例化渲染的特殊性:在实例化渲染中,虽然每个实例的位置可能不同,但它们的几何形状通常相同。因此可以使用一个统一的边界框来包含所有可能的实例位置。
-
性能考量:边界框应该尽可能紧密地包裹模型,过大或过小的边界框都会影响渲染性能。对于实例化渲染,可以考虑动态计算包含所有实例位置的边界框。
最佳实践
-
始终为自定义网格设置边界框:这是保证渲染正确性的基本要求。
-
考虑实例化范围:如果实例化模型的位置范围很大,应该相应扩大边界框,确保能包含所有可能的实例位置。
-
动态更新边界框:对于位置会变化的实例化模型,可以考虑每帧更新边界框。
-
调试工具使用:Galacean引擎通常提供可视化调试工具,可以开启边界框显示来验证设置是否正确。
总结
在Galacean引擎中使用实例化渲染时,正确设置边界框是保证渲染效果的关键步骤之一。这个问题看似简单,但很容易被忽视,特别是在自定义网格的情况下。理解引擎的视锥体裁切机制和边界框的作用,可以帮助开发者更好地优化渲染性能并避免类似的渲染问题。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









