GLM-4模型工具调用中的参数传递问题分析与解决方案
问题现象
在使用GLM-4系列模型(包括glm-4、glm-4-flash以及本地部署版本)通过LangChain框架进行工具调用时,开发者遇到了一个典型的中文参数传递异常问题。具体表现为:当模型调用工具时,中文参数内容会出现错乱现象,例如预期传递"哈喽"却变成了"哈结"、"底嗦"等不相关字符。
问题分析
经过深入分析,我们发现这一问题主要源于以下几个方面:
-
LangChain框架兼容性问题:GLM-4系列模型对LangChain框架的工具绑定方式支持不完全,特别是在中文参数处理上存在兼容性问题。
-
提示词格式要求:GLM-4模型对工具调用的提示词格式有特定要求,需要遵循其预定义的模板结构,而LangChain的默认绑定方式可能不符合这一要求。
-
中文处理特殊性:相比其他模型如Qwen2.5-7B,GLM-4在中文参数处理上表现不稳定,特别是在工具调用场景下。
解决方案
针对这一问题,我们建议采用以下解决方案:
-
使用标准OpenAI API格式: 避免直接使用LangChain的工具绑定方法,转而采用标准的OpenAI API格式定义和传递工具参数。这种方式能更好地保证参数传递的准确性。
-
遵循GLM-4工具定义规范: 参考GLM-4项目中的composite demo实现方式,严格按照其定义的工具书写形式进行开发。这种方式能确保与模型的预期输入格式完全匹配。
-
提示词优化: 确保系统提示词不为空,并遵循GLM-4模型要求的固定格式。可以从模型文件的tokenizer_config.json中获取正确的chat template。
-
模型选择建议: 对于中文工具调用场景,可以优先考虑使用对中文支持更好的模型,如Qwen系列。如果必须使用GLM-4,建议测试glm-4-flash版本的稳定性。
最佳实践建议
-
在工具定义时,为每个参数添加详细的中文描述,帮助模型更好地理解参数含义。
-
对关键参数添加类型约束和取值范围限制,减少模型理解偏差。
-
在工具调用前后添加日志记录,便于追踪参数传递过程。
-
考虑实现参数校验机制,在工具执行前对参数进行二次验证。
通过以上方法,开发者可以显著提高GLM-4模型在中文环境下工具调用的稳定性和准确性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00