GLM-4多模态模型使用中的图像参数传递问题解析
问题背景
在使用GLM-4多模态版本进行图像理解任务时,开发者可能会遇到一个关于model_kwargs参数传递的报错问题。具体表现为当尝试通过tokenizer处理包含图像的对话模板时,系统提示ValueError: The following model_kwargs are not used by the model: ['images']的错误信息。
问题现象分析
当开发者按照常规方式构建包含图像的对话输入时,通常会这样组织数据结构:
inputs = tokenizer.apply_chat_template(
[{"role": "user", "image": image, "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
然而,这种写法会导致系统报错,提示images参数未被模型使用。有趣的是,如果将输入中的image键名改为images,虽然不再报错,但模型却无法正确识别图像内容。
根本原因
经过深入分析,发现这个问题源于GLM-4多模态版本在参数传递机制上的特殊设计:
-
消息层与输入层的参数命名差异:在消息(message)层面,图像参数使用
image作为键名;而在实际模型输入(input)层面,则使用images作为键名。 -
参数传递机制:tokenizer在内部处理过程中会将消息层的
image参数自动转换为输入层的images参数,开发者不应直接修改消息层的参数名。
解决方案
正确的使用方式应遵循以下原则:
-
保持消息层的参数名为
image:在构建对话模板时,继续使用image作为图像参数的键名。 -
确保transformers版本兼容性:使用transformers 4.40.0及以上版本,推荐4.40.2版本以获得最佳兼容性。
-
完整示例代码:
device = "cuda"
# 初始化tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"/path/to/glm-4v-9b",
trust_remote_code=True
)
# 准备输入
query = '描述这张图片'
image = Image.open("assets/airplane.jpeg").convert('RGB')
# 构建对话模板(注意使用image作为键名)
inputs = tokenizer.apply_chat_template(
[{"role": "user", "image": image, "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
"/path/to/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
# 生成配置
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
# 执行推理
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
技术要点
-
参数转换机制:GLM-4的tokenizer在内部会自动处理图像参数的名称转换,开发者无需手动干预这一过程。
-
版本依赖:transformers库从4.40.0版本开始对多模态模型的支持更加完善,特别是对参数传递机制的处理更加规范。
-
错误处理:当遇到类似参数未被使用的错误时,首先应检查参数名是否符合模型文档要求,而不是盲目修改参数名。
最佳实践建议
-
始终参考官方文档和示例代码中的参数命名规范。
-
在处理多模态输入时,注意区分消息层和模型输入层的参数命名差异。
-
保持开发环境中的关键库(如transformers)更新到推荐版本。
-
当遇到参数传递问题时,先打印完整的输入数据结构,帮助诊断问题所在。
通过遵循这些指导原则,开发者可以避免常见的参数传递错误,充分发挥GLM-4多模态版本的强大能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00