GLM-4多模态模型使用中的图像参数传递问题解析
问题背景
在使用GLM-4多模态版本进行图像理解任务时,开发者可能会遇到一个关于model_kwargs参数传递的报错问题。具体表现为当尝试通过tokenizer处理包含图像的对话模板时,系统提示ValueError: The following model_kwargs are not used by the model: ['images']的错误信息。
问题现象分析
当开发者按照常规方式构建包含图像的对话输入时,通常会这样组织数据结构:
inputs = tokenizer.apply_chat_template(
[{"role": "user", "image": image, "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
然而,这种写法会导致系统报错,提示images参数未被模型使用。有趣的是,如果将输入中的image键名改为images,虽然不再报错,但模型却无法正确识别图像内容。
根本原因
经过深入分析,发现这个问题源于GLM-4多模态版本在参数传递机制上的特殊设计:
-
消息层与输入层的参数命名差异:在消息(message)层面,图像参数使用
image作为键名;而在实际模型输入(input)层面,则使用images作为键名。 -
参数传递机制:tokenizer在内部处理过程中会将消息层的
image参数自动转换为输入层的images参数,开发者不应直接修改消息层的参数名。
解决方案
正确的使用方式应遵循以下原则:
-
保持消息层的参数名为
image:在构建对话模板时,继续使用image作为图像参数的键名。 -
确保transformers版本兼容性:使用transformers 4.40.0及以上版本,推荐4.40.2版本以获得最佳兼容性。
-
完整示例代码:
device = "cuda"
# 初始化tokenizer
tokenizer = AutoTokenizer.from_pretrained(
"/path/to/glm-4v-9b",
trust_remote_code=True
)
# 准备输入
query = '描述这张图片'
image = Image.open("assets/airplane.jpeg").convert('RGB')
# 构建对话模板(注意使用image作为键名)
inputs = tokenizer.apply_chat_template(
[{"role": "user", "image": image, "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
# 加载模型
model = AutoModelForCausalLM.from_pretrained(
"/path/to/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
# 生成配置
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
# 执行推理
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
技术要点
-
参数转换机制:GLM-4的tokenizer在内部会自动处理图像参数的名称转换,开发者无需手动干预这一过程。
-
版本依赖:transformers库从4.40.0版本开始对多模态模型的支持更加完善,特别是对参数传递机制的处理更加规范。
-
错误处理:当遇到类似参数未被使用的错误时,首先应检查参数名是否符合模型文档要求,而不是盲目修改参数名。
最佳实践建议
-
始终参考官方文档和示例代码中的参数命名规范。
-
在处理多模态输入时,注意区分消息层和模型输入层的参数命名差异。
-
保持开发环境中的关键库(如transformers)更新到推荐版本。
-
当遇到参数传递问题时,先打印完整的输入数据结构,帮助诊断问题所在。
通过遵循这些指导原则,开发者可以避免常见的参数传递错误,充分发挥GLM-4多模态版本的强大能力。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00