Label Studio中YOLO姿态估计数据导出的解决方案
背景介绍
在使用Label Studio标注工具进行姿态估计任务时,用户经常需要将标注数据导出为YOLO格式用于模型训练。然而,当涉及到关键点检测任务时,标准的YOLO导出功能可能无法满足需求,导致训练过程中出现错误。
问题分析
在姿态估计任务中,YOLO格式通常需要包含多个关键点的坐标信息。标准的YOLO格式每行包含7列数据:类别ID、边界框中心x坐标、中心y坐标、宽度、高度,以及关键点的x、y坐标和可见性标志。而Label Studio默认导出的YOLO格式可能只包含5列基础数据,缺少关键点信息。
解决方案
对于需要导出关键点数据的用户,可以采用以下方法:
-
使用SDK代码转换:通过Label Studio提供的SDK代码,可以将标注数据转换为包含关键点信息的YOLO格式。这种方法需要编写少量Python代码来处理原始标注数据。
-
数据结构调整:在转换过程中,需要注意处理关键点与主体对象之间的关系。原始JSON数据中可能缺少parentID字段,需要通过其他方式建立关键点与主体对象之间的关联。
实现步骤
-
获取原始标注数据:从Label Studio导出JSON格式的原始标注数据。
-
解析关键点信息:遍历标注数据,提取每个关键点的坐标和可见性信息。
-
建立关联关系:为每个关键点确定其所属的主体对象,可以通过对象ID或其他关联字段建立关系。
-
生成YOLO格式:按照YOLO姿态估计的数据格式要求,将边界框信息和关键点信息组合成完整的标注行。
-
验证数据完整性:检查生成的标注文件是否包含所有必要信息,确保没有遗漏关键点数据。
注意事项
-
关键点数量应与模型配置中的kpt_shape参数一致。
-
确保关键点坐标已经归一化到[0,1]范围内。
-
对于不可见的关键点,应设置适当的可见性标志。
-
检查生成的YOLO格式文件是否包含所有必要的列数,避免训练时出现"labels require 7 columns each"等错误。
通过以上方法,用户可以成功地将Label Studio中的姿态估计标注数据转换为YOLO可用的格式,为后续的模型训练做好准备。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00