Label Studio中YOLO姿态估计数据导出的解决方案
背景介绍
在使用Label Studio标注工具进行姿态估计任务时,用户经常需要将标注数据导出为YOLO格式用于模型训练。然而,当涉及到关键点检测任务时,标准的YOLO导出功能可能无法满足需求,导致训练过程中出现错误。
问题分析
在姿态估计任务中,YOLO格式通常需要包含多个关键点的坐标信息。标准的YOLO格式每行包含7列数据:类别ID、边界框中心x坐标、中心y坐标、宽度、高度,以及关键点的x、y坐标和可见性标志。而Label Studio默认导出的YOLO格式可能只包含5列基础数据,缺少关键点信息。
解决方案
对于需要导出关键点数据的用户,可以采用以下方法:
-
使用SDK代码转换:通过Label Studio提供的SDK代码,可以将标注数据转换为包含关键点信息的YOLO格式。这种方法需要编写少量Python代码来处理原始标注数据。
-
数据结构调整:在转换过程中,需要注意处理关键点与主体对象之间的关系。原始JSON数据中可能缺少parentID字段,需要通过其他方式建立关键点与主体对象之间的关联。
实现步骤
-
获取原始标注数据:从Label Studio导出JSON格式的原始标注数据。
-
解析关键点信息:遍历标注数据,提取每个关键点的坐标和可见性信息。
-
建立关联关系:为每个关键点确定其所属的主体对象,可以通过对象ID或其他关联字段建立关系。
-
生成YOLO格式:按照YOLO姿态估计的数据格式要求,将边界框信息和关键点信息组合成完整的标注行。
-
验证数据完整性:检查生成的标注文件是否包含所有必要信息,确保没有遗漏关键点数据。
注意事项
-
关键点数量应与模型配置中的kpt_shape参数一致。
-
确保关键点坐标已经归一化到[0,1]范围内。
-
对于不可见的关键点,应设置适当的可见性标志。
-
检查生成的YOLO格式文件是否包含所有必要的列数,避免训练时出现"labels require 7 columns each"等错误。
通过以上方法,用户可以成功地将Label Studio中的姿态估计标注数据转换为YOLO可用的格式,为后续的模型训练做好准备。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









