首页
/ Label Studio中YOLO姿态估计数据导出的解决方案

Label Studio中YOLO姿态估计数据导出的解决方案

2025-05-10 13:12:45作者:明树来

背景介绍

在使用Label Studio标注工具进行姿态估计任务时,用户经常需要将标注数据导出为YOLO格式用于模型训练。然而,当涉及到关键点检测任务时,标准的YOLO导出功能可能无法满足需求,导致训练过程中出现错误。

问题分析

在姿态估计任务中,YOLO格式通常需要包含多个关键点的坐标信息。标准的YOLO格式每行包含7列数据:类别ID、边界框中心x坐标、中心y坐标、宽度、高度,以及关键点的x、y坐标和可见性标志。而Label Studio默认导出的YOLO格式可能只包含5列基础数据,缺少关键点信息。

解决方案

对于需要导出关键点数据的用户,可以采用以下方法:

  1. 使用SDK代码转换:通过Label Studio提供的SDK代码,可以将标注数据转换为包含关键点信息的YOLO格式。这种方法需要编写少量Python代码来处理原始标注数据。

  2. 数据结构调整:在转换过程中,需要注意处理关键点与主体对象之间的关系。原始JSON数据中可能缺少parentID字段,需要通过其他方式建立关键点与主体对象之间的关联。

实现步骤

  1. 获取原始标注数据:从Label Studio导出JSON格式的原始标注数据。

  2. 解析关键点信息:遍历标注数据,提取每个关键点的坐标和可见性信息。

  3. 建立关联关系:为每个关键点确定其所属的主体对象,可以通过对象ID或其他关联字段建立关系。

  4. 生成YOLO格式:按照YOLO姿态估计的数据格式要求,将边界框信息和关键点信息组合成完整的标注行。

  5. 验证数据完整性:检查生成的标注文件是否包含所有必要信息,确保没有遗漏关键点数据。

注意事项

  1. 关键点数量应与模型配置中的kpt_shape参数一致。

  2. 确保关键点坐标已经归一化到[0,1]范围内。

  3. 对于不可见的关键点,应设置适当的可见性标志。

  4. 检查生成的YOLO格式文件是否包含所有必要的列数,避免训练时出现"labels require 7 columns each"等错误。

通过以上方法,用户可以成功地将Label Studio中的姿态估计标注数据转换为YOLO可用的格式,为后续的模型训练做好准备。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
508
44
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
339
11
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70