AI-in-well-logging 项目使用教程
2024-09-13 16:18:21作者:侯霆垣
1. 项目介绍
AI-in-well-logging 是一个开源项目,专注于利用人工智能技术在石油测井领域的应用。该项目主要采用机器学习和深度学习等方法,进行岩性识别和相关测井曲线的回归分析。通过该项目,研究人员和工程师可以更高效地处理和分析测井数据,提高石油勘探和开发的效率。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的环境中已经安装了以下依赖:
- Python 3.7+
- Jupyter Notebook
- 必要的Python库:
numpy,pandas,scikit-learn,tensorflow,keras
您可以使用以下命令安装这些库:
pip install numpy pandas scikit-learn tensorflow keras jupyter
2.2 克隆项目
首先,克隆 AI-in-well-logging 项目到本地:
git clone https://github.com/sunyingjian/AI-in-well-logging.git
cd AI-in-well-logging
2.3 运行示例代码
项目中包含多个示例代码文件,您可以通过 Jupyter Notebook 运行这些示例。以下是一个简单的启动步骤:
-
启动 Jupyter Notebook:
jupyter notebook -
在浏览器中打开 Jupyter Notebook,导航到项目目录,选择一个示例文件(例如
Facies_Classification_SVM.ipynb)并运行。
3. 应用案例和最佳实践
3.1 岩性分类
项目中提供了多种机器学习模型(如 SVM、随机森林、XGBoost 等)用于岩性分类。以下是一个简单的 SVM 分类示例:
from sklearn import svm
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 加载数据
data = ... # 从文件或数据库中加载测井数据
X = data.drop('lithology', axis=1)
y = data['lithology']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练 SVM 模型
model = svm.SVC()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy}')
3.2 测井曲线回归
项目还提供了多种回归模型(如线性回归、岭回归、GBDT 等)用于测井曲线的回归分析。以下是一个简单的线性回归示例:
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
# 加载数据
data = ... # 从文件或数据库中加载测井数据
X = data.drop('log_value', axis=1)
y = data['log_value']
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练线性回归模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
4. 典型生态项目
4.1 numpy-
numpy- 是 AI-in-well-logging 项目的数据存储库,包含了所有实验数据。您可以通过以下链接访问:
4.2 Google Colab
推荐使用 Google Colab 运行项目中的实验代码,方便快捷。您可以通过以下链接访问:
通过以上步骤,您可以快速上手并深入了解 AI-in-well-logging 项目,并将其应用于实际的石油测井数据分析中。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350