Caffeine缓存库中RemovalListener异步通知机制解析
2025-05-13 23:31:33作者:何举烈Damon
背景介绍
Caffeine是一个高性能的Java缓存库,广泛应用于需要高效缓存的场景。在缓存使用过程中,当缓存项被移除时,开发者经常需要监听这些移除事件以执行一些后续操作。Caffeine提供了RemovalListener接口来实现这一功能。
问题现象
在单元测试中,开发者发现当向已满的缓存中添加新条目时,RemovalListener有时不会被立即调用。具体表现为:当缓存大小限制为2时,连续添加3个条目后,预期会有一个条目被移除并触发监听器,但测试中经常出现监听器未被调用的情况。
原因分析
这种现象的根本原因在于Caffeine的设计机制:
- 异步通知机制:Caffeine默认将移除通知任务提交给一个独立的Executor执行,而不是在调用线程中同步执行
- cleanUp方法的局限性:cleanUp()方法会触发缓存维护操作,但不会等待通知任务完成
- 测试线程与通知线程的竞态条件:测试线程可能在通知任务执行前就进行了断言检查
解决方案
针对这一问题,Caffeine提供了多种解决方案:
方案一:使用同步执行器
在测试环境中,可以配置Caffeine使用调用线程直接执行通知任务:
Cache<String, String> cache = Caffeine.newBuilder()
.maximumSize(2)
.executor(Runnable::run) // 使用调用线程同步执行
.removalListener((key, value, cause) -> removed.add(key))
.build();
这种方式简单直接,适合大多数测试场景。
方案二:使用Awaitility等待条件满足
对于需要验证异步行为的测试,可以使用Awaitility库等待预期状态:
await().until(cache::asMap, is(aMapWithSize(2)));
await().until(() -> removed, hasSize(1));
这种方法更贴近真实异步场景,能更好地验证系统行为。
方案三:结合cleanUp与等待
在明确需要触发维护操作时,可以先调用cleanUp(),然后等待结果:
cache.cleanUp();
await().until(() -> removed, hasSize(1));
最佳实践建议
- 在测试环境中优先考虑使用同步执行器,简化测试逻辑
- 在生产环境中保留默认的异步机制,保证性能
- 对于复杂的并发场景测试,使用专门的等待工具如Awaitility
- 注意使用线程安全的集合来收集移除通知,如ConcurrentLinkedQueue
技术原理深入
Caffeine采用这种设计主要基于以下考虑:
- 性能优化:异步执行避免阻塞缓存操作的主路径
- 资源隔离:防止用户回调代码影响缓存内部运作
- 可扩展性:允许用户自定义Executor以适应不同场景
理解这一机制对于正确使用Caffeine至关重要,特别是在需要严格保证数据一致性的场景中。开发者应当根据具体需求选择合适的通知处理方式,并在测试中充分考虑并发场景下的各种可能性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
645
149
Ascend Extension for PyTorch
Python
207
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
286
React Native鸿蒙化仓库
JavaScript
250
317
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.13 K
637
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
78
101
仓颉编译器源码及 cjdb 调试工具。
C++
130
861
仓颉编程语言运行时与标准库。
Cangjie
134
873