glTFast 6.10.2版本发布:性能优化与纹理处理新特性
项目简介
glTFast是一个专注于高效加载和导出glTF格式资源的Unity插件。glTF作为一种开放的3D模型传输格式,在游戏开发、虚拟现实和增强现实等领域有着广泛应用。glTFast通过优化加载流程和资源处理,为开发者提供了高性能的glTF格式支持,特别适合需要快速加载大量3D模型的场景。
新增功能解析
纹理可读性控制
在6.10.2版本中,glTFast为导入器增加了一个重要的新功能——"Textures Readable"复选框。这个选项位于导入器检查器的"Textures"部分,允许开发者明确控制导入的纹理是否可被CPU读取。
这个功能的加入解决了开发者在不同场景下的需求矛盾:
- 当需要运行时修改纹理时,必须启用可读性
- 但启用可读性会增加内存占用
- 现在开发者可以根据实际需求灵活选择
导出功能增强
新版本改进了导出功能,当尝试使用不支持的meshopt压缩时,会显示明确的错误信息。这有助于开发者快速定位问题,而不是在导出失败后花费时间排查原因。
测试套件扩展
6.10.2版本显著增强了测试覆盖范围:
- 新增运行时导入性能测试,帮助开发者评估不同场景下的加载效率
- 引入程序化生成的glTF测试用例,确保对各种可能情况的兼容性
- 增加编辑器导出测试,验证导出功能的稳定性
性能优化改进
测试效率提升
开发团队对性能测试进行了优化,通过减小缓冲区大小和采用动态测量计数,显著减少了性能测试的运行时间。这使得持续集成流程更加高效,同时仍能保证测试的准确性。
条件性性能测试
考虑到性能测试可能消耗较多资源,新版本将其设为可选执行。只有在设置了RUN_PERFORMANCE_TESTS
脚本定义时才会运行这些测试,为开发者的工作流程提供了更大的灵活性。
关键问题修复
导出功能稳定性
6.10.2版本修复了几个关键的导出问题:
- 解决了导出不可读网格时Unity编辑器无响应的问题
- 修正了使用Draco压缩导出时,蒙皮网格缺少
inverseBindMatrices
/bindPoses
数据的问题
性能测试兼容性
确保在没有安装Collections包1.5.0及以上版本时,性能测试仍能正常编译。这提高了插件的兼容性,使其能在更广泛的环境中运行。
分析器标记一致性
修复了分析器标记不一致的问题,使得性能分析结果更加准确可靠,帮助开发者更好地优化资源加载流程。
技术实现细节
ICodeLogger接口改进
为了兼容Unity 2021 LTS及更新版本,为ICodeLogger
接口添加了Log
方法的默认实现。这一改动虽然微小,但确保了代码在不同Unity版本间的兼容性,体现了项目对向后兼容性的重视。
持续集成流程优化
开发团队改进了CI流程,确保开发文档和工具代码也接受代码格式检查。这种对代码质量的严格要求,有助于维护项目的长期健康度。
总结
glTFast 6.10.2版本虽然在版本号上只是一个小的迭代,但带来了多项实用的改进和修复。从纹理处理的可配置性,到导出功能的稳定性增强,再到测试套件的完善,每个改进都针对实际开发中的痛点。这些变化使得glTFast在保持高性能的同时,提供了更稳定、更灵活的工作流程,进一步巩固了其作为Unity生态中高效glTF解决方案的地位。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









