glTFast 6.9.0版本发布:Unity高效glTF加载方案重大更新
glTFast是Unity平台上广受欢迎的glTF格式加载解决方案,它能够高效地将glTF/GLB格式的3D模型资源导入Unity项目。作为专注于性能优化的轻量级工具,glTFast特别适合需要快速加载3D内容的移动端和WebGL项目。本次发布的6.9.0版本带来了多项重要改进和修复,进一步提升了工具的稳定性和功能性。
核心架构调整
本次更新最显著的变化是glTFast项目结构的重大调整。开发团队决定将OpenUPM上发布的版本转变为Unity官方分支的同步版本。这意味着OpenUPM版本将不再包含完整的开发工具链和测试套件,开发者如果需要完整开发环境,应该直接使用Unity的官方分支。
在技术实现层面,6.9.0版本移除了对KtxUnity的依赖,转而采用Unity官方维护的KTX for Unity解决方案。这一变化确保了纹理压缩格式支持与Unity引擎的更深度集成,为开发者提供了更稳定的KTX纹理支持。
关键功能改进
新版本引入了全面的包一致性测试机制,确保包版本信息在导出生成器字符串和文档中保持一致。这种自动化验证机制大大降低了版本管理出错的可能性。
针对Android平台的兼容性进行了重点优化。修复了从StreamingAssets加载含有Unicode字符的相对URI路径的问题,现在UriHelper能够正确处理Android特有的jar:file://协议URI。同时改进了测试用例,使用UnityWebRequest从压缩的JAR文件中获取测试数据,确保了Android平台测试的可靠性。
在导出功能方面,修复了纹理变换的导出问题,特别是当glTFast材质上的纹理仅进行垂直缩放时丢失变换信息的情况。同时优化了输出流的分配策略,避免了潜在的数据丢失风险。
代码质量提升
开发团队对代码库进行了全面的质量改进:
- 重构了哈希码计算逻辑,确保只使用不可变字段进行计算,消除了潜在的不一致风险
- 移除了TextureBase中过时的GetHashCode/Equals实现,改用专门的TextureComparer
- 引入MeshPrimitiveComparer替代原有的哈希计算方式,提高了网格图元聚类的准确性
- 增加了全面的空值检查和浮点数精度比较,提升了代码的健壮性
文档与示例优化
新版本对文档和示例代码进行了系统性的整理:
- 将文档引用的代码示例统一移至DocExamples文件夹
- 规范了示例代码的命名空间为GLTFast.Documentation.Examples
- 更新了最低Unity版本要求说明,明确需要2020.3.48f1或更高版本
- 根据用户反馈完善了多处文档内容,提高了文档的准确性和易读性
测试与验证增强
测试套件得到了显著改进:
- 改进了异步测试的错误报告机制,现在会抛出最内层异常同时保留堆栈信息
- 导出渲染测试在没有验证结果时会明确标记为"不确定"
- 移除了过时的代码覆盖率徽章,保持项目信息的准确性
glTFast 6.9.0版本的这些改进,使得这个已经相当成熟的glTF加载解决方案在稳定性、兼容性和易用性方面都达到了新的高度,为Unity开发者处理3D内容提供了更加可靠的保障。
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GLM-V
GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement LearningPython00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0107AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









