Self-LLM项目中GLM-4-9B-chat微调常见问题解析
问题背景
在Self-LLM项目中使用GLM-4-9B-chat模型进行LoRA微调时,许多开发者遇到了一个典型错误:在加载LoRA权重进行推理阶段出现"ValueError: too many values to unpack (expected 2)"的错误。这个错误通常发生在模型生成阶段,具体表现为在尝试解包kv_cache时出现值数量不匹配的问题。
错误分析
该错误的根本原因在于环境依赖版本不兼容。从错误堆栈可以看出,问题出现在SelfAttention模块处理kv_cache时,模型期望接收两个值(cache_k和cache_v),但实际接收到的参数数量不符。这种类型的问题通常与以下因素有关:
- transformers库版本过高
- peft库与其他组件的版本冲突
- 模型实现与库版本不匹配
解决方案
经过社区验证,最可靠的解决方案是严格按照以下依赖版本配置环境:
modelscope==1.9.5
transformers==4.40.0
streamlit==1.24.0
sentencepiece==0.1.99
accelerate==0.29.3
datasets==2.13.0
peft==0.10.0
tiktoken==0.7.0
特别需要注意的是,transformers库的版本不能高于4.40.0。这是解决该问题的关键因素。
其他可能出现的相关问题
在解决上述问题后,开发者可能还会遇到以下类似错误:
-
TypeError: argument after ** must be a mapping, not Tensor 这通常是由于输入参数格式不正确导致的,确保传入generate()方法的参数是字典格式。
-
Keyword arguments not recognized 这种错误提示某些参数不被识别,同样可能是由于版本不兼容或参数传递方式不正确。
最佳实践建议
-
环境隔离:建议使用虚拟环境或容器技术隔离项目环境,避免依赖冲突。
-
版本控制:使用requirements.txt或environment.yml文件精确控制依赖版本。
-
分步验证:在完整流程前,先验证基础功能是否正常工作。
-
错误处理:在代码中添加适当的错误处理和日志记录,便于快速定位问题。
技术原理深入
这个问题的本质在于不同版本的transformers和peft库对模型内部状态的处理方式不同。GLM-4-9B-chat模型在实现时对kv_cache的处理有特定要求,当库版本不匹配时:
- 高版本transformers可能改变了内部状态的组织方式
- peft的适配层可能无法正确转换这些状态
- 导致模型在解码时无法正确解析注意力机制的缓存状态
因此,保持版本一致是确保各组件协同工作的关键。
总结
在使用Self-LLM项目进行大模型微调时,环境配置是成功的关键因素之一。特别是对于GLM-4这样的国产大模型,更需要严格按照推荐的依赖版本进行环境搭建。遇到类似"too many values to unpack"的错误时,首先应该检查环境版本是否匹配,这是解决大多数兼容性问题的有效方法。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00