Self-LLM项目中GLM-4-9B-chat微调常见问题解析
问题背景
在Self-LLM项目中使用GLM-4-9B-chat模型进行LoRA微调时,许多开发者遇到了一个典型错误:在加载LoRA权重进行推理阶段出现"ValueError: too many values to unpack (expected 2)"的错误。这个错误通常发生在模型生成阶段,具体表现为在尝试解包kv_cache时出现值数量不匹配的问题。
错误分析
该错误的根本原因在于环境依赖版本不兼容。从错误堆栈可以看出,问题出现在SelfAttention模块处理kv_cache时,模型期望接收两个值(cache_k和cache_v),但实际接收到的参数数量不符。这种类型的问题通常与以下因素有关:
- transformers库版本过高
- peft库与其他组件的版本冲突
- 模型实现与库版本不匹配
解决方案
经过社区验证,最可靠的解决方案是严格按照以下依赖版本配置环境:
modelscope==1.9.5
transformers==4.40.0
streamlit==1.24.0
sentencepiece==0.1.99
accelerate==0.29.3
datasets==2.13.0
peft==0.10.0
tiktoken==0.7.0
特别需要注意的是,transformers库的版本不能高于4.40.0。这是解决该问题的关键因素。
其他可能出现的相关问题
在解决上述问题后,开发者可能还会遇到以下类似错误:
-
TypeError: argument after ** must be a mapping, not Tensor 这通常是由于输入参数格式不正确导致的,确保传入generate()方法的参数是字典格式。
-
Keyword arguments not recognized 这种错误提示某些参数不被识别,同样可能是由于版本不兼容或参数传递方式不正确。
最佳实践建议
-
环境隔离:建议使用虚拟环境或容器技术隔离项目环境,避免依赖冲突。
-
版本控制:使用requirements.txt或environment.yml文件精确控制依赖版本。
-
分步验证:在完整流程前,先验证基础功能是否正常工作。
-
错误处理:在代码中添加适当的错误处理和日志记录,便于快速定位问题。
技术原理深入
这个问题的本质在于不同版本的transformers和peft库对模型内部状态的处理方式不同。GLM-4-9B-chat模型在实现时对kv_cache的处理有特定要求,当库版本不匹配时:
- 高版本transformers可能改变了内部状态的组织方式
- peft的适配层可能无法正确转换这些状态
- 导致模型在解码时无法正确解析注意力机制的缓存状态
因此,保持版本一致是确保各组件协同工作的关键。
总结
在使用Self-LLM项目进行大模型微调时,环境配置是成功的关键因素之一。特别是对于GLM-4这样的国产大模型,更需要严格按照推荐的依赖版本进行环境搭建。遇到类似"too many values to unpack"的错误时,首先应该检查环境版本是否匹配,这是解决大多数兼容性问题的有效方法。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









