GLM-4项目中使用vLLM部署模型时遇到的架构支持问题及解决方案
在GLM-4大模型项目的实际部署过程中,许多开发者尝试使用vLLM推理引擎来部署GLM-4-9B-Chat模型时遇到了一个常见的技术障碍。当运行vLLM服务命令时,系统会报错提示"Model architectures ['GlmForCausalLM'] are not supported for now",这表明当前版本的vLLM尚未支持GLM特有的模型架构。
问题背景分析
vLLM作为一个高性能的LLM推理和服务引擎,目前稳定版本(0.6.x系列)官方支持的模型架构列表中确实不包含GLM特有的GlmForCausalLM架构。这个问题在多个vLLM版本(0.6.1/0.6.3/0.6.4)中均存在,与CUDA 12.2和transformers 4.46.x版本的组合无关。
技术细节解析
GLM-4项目提供了两种模型格式:
- 原始GLM格式模型
- HuggingFace格式模型(带-hf后缀)
虽然HuggingFace格式模型提高了与transformers库未来版本的兼容性,但在模型性能指标上两者完全一致。这个兼容性问题纯粹是vLLM引擎对特定架构的支持问题,与模型本身的性能无关。
解决方案
目前有两种可行的解决方案:
-
使用非HF格式模型:暂时使用原始的glm-4-9b-chat版本进行部署,避开架构支持问题。
-
等待vLLM官方更新:vLLM项目已经有一个专门解决此问题的PR(#10561),该更新将为vLLM添加对GlmForCausalLM架构的正式支持。开发者可以关注vLLM的版本更新,待该PR合并发布后即可使用最新版vLLM部署HF格式的GLM-4模型。
最佳实践建议
对于急需部署的生产环境,建议采用第一种方案,使用原始GLM格式模型进行部署。对于追求长期兼容性的开发环境,可以等待vLLM官方支持更新后再迁移到HF格式模型。无论采用哪种方案,模型的实际推理性能都不会受到影响。
这个案例也提醒我们,在使用新兴的大模型技术栈时,要注意各组件之间的兼容性问题,特别是当涉及不同团队开发的基础设施和模型架构时,版本适配往往需要特别关注。
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0275community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









