GLM-4项目中使用vLLM部署模型时遇到的架构支持问题及解决方案
在GLM-4大模型项目的实际部署过程中,许多开发者尝试使用vLLM推理引擎来部署GLM-4-9B-Chat模型时遇到了一个常见的技术障碍。当运行vLLM服务命令时,系统会报错提示"Model architectures ['GlmForCausalLM'] are not supported for now",这表明当前版本的vLLM尚未支持GLM特有的模型架构。
问题背景分析
vLLM作为一个高性能的LLM推理和服务引擎,目前稳定版本(0.6.x系列)官方支持的模型架构列表中确实不包含GLM特有的GlmForCausalLM架构。这个问题在多个vLLM版本(0.6.1/0.6.3/0.6.4)中均存在,与CUDA 12.2和transformers 4.46.x版本的组合无关。
技术细节解析
GLM-4项目提供了两种模型格式:
- 原始GLM格式模型
- HuggingFace格式模型(带-hf后缀)
虽然HuggingFace格式模型提高了与transformers库未来版本的兼容性,但在模型性能指标上两者完全一致。这个兼容性问题纯粹是vLLM引擎对特定架构的支持问题,与模型本身的性能无关。
解决方案
目前有两种可行的解决方案:
-
使用非HF格式模型:暂时使用原始的glm-4-9b-chat版本进行部署,避开架构支持问题。
-
等待vLLM官方更新:vLLM项目已经有一个专门解决此问题的PR(#10561),该更新将为vLLM添加对GlmForCausalLM架构的正式支持。开发者可以关注vLLM的版本更新,待该PR合并发布后即可使用最新版vLLM部署HF格式的GLM-4模型。
最佳实践建议
对于急需部署的生产环境,建议采用第一种方案,使用原始GLM格式模型进行部署。对于追求长期兼容性的开发环境,可以等待vLLM官方支持更新后再迁移到HF格式模型。无论采用哪种方案,模型的实际推理性能都不会受到影响。
这个案例也提醒我们,在使用新兴的大模型技术栈时,要注意各组件之间的兼容性问题,特别是当涉及不同团队开发的基础设施和模型架构时,版本适配往往需要特别关注。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00