GLM-4项目中使用vLLM部署模型时遇到的架构支持问题及解决方案
在GLM-4大模型项目的实际部署过程中,许多开发者尝试使用vLLM推理引擎来部署GLM-4-9B-Chat模型时遇到了一个常见的技术障碍。当运行vLLM服务命令时,系统会报错提示"Model architectures ['GlmForCausalLM'] are not supported for now",这表明当前版本的vLLM尚未支持GLM特有的模型架构。
问题背景分析
vLLM作为一个高性能的LLM推理和服务引擎,目前稳定版本(0.6.x系列)官方支持的模型架构列表中确实不包含GLM特有的GlmForCausalLM架构。这个问题在多个vLLM版本(0.6.1/0.6.3/0.6.4)中均存在,与CUDA 12.2和transformers 4.46.x版本的组合无关。
技术细节解析
GLM-4项目提供了两种模型格式:
- 原始GLM格式模型
- HuggingFace格式模型(带-hf后缀)
虽然HuggingFace格式模型提高了与transformers库未来版本的兼容性,但在模型性能指标上两者完全一致。这个兼容性问题纯粹是vLLM引擎对特定架构的支持问题,与模型本身的性能无关。
解决方案
目前有两种可行的解决方案:
-
使用非HF格式模型:暂时使用原始的glm-4-9b-chat版本进行部署,避开架构支持问题。
-
等待vLLM官方更新:vLLM项目已经有一个专门解决此问题的PR(#10561),该更新将为vLLM添加对GlmForCausalLM架构的正式支持。开发者可以关注vLLM的版本更新,待该PR合并发布后即可使用最新版vLLM部署HF格式的GLM-4模型。
最佳实践建议
对于急需部署的生产环境,建议采用第一种方案,使用原始GLM格式模型进行部署。对于追求长期兼容性的开发环境,可以等待vLLM官方支持更新后再迁移到HF格式模型。无论采用哪种方案,模型的实际推理性能都不会受到影响。
这个案例也提醒我们,在使用新兴的大模型技术栈时,要注意各组件之间的兼容性问题,特别是当涉及不同团队开发的基础设施和模型架构时,版本适配往往需要特别关注。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00