GLM-4项目中的vLLM服务部署与Chat Template问题解析
在部署GLM-4v-9b模型时,使用vLLM作为推理服务框架是一个常见选择。然而,在实际部署过程中,开发者可能会遇到Chat Template缺失导致服务调用失败的问题。本文将深入分析这一问题及其解决方案。
问题背景
当使用vLLM 0.6.3.post1和transformers 4.46.1部署GLM-4v-9b模型时,通过OpenAI兼容API调用/v1/chat/completions接口会返回错误信息:"As of transformers v4.44, default chat template is no longer allowed, so you must provide a chat template if the tokenizer does not define one"。
这一问题的根源在于transformers库从4.44版本开始,不再允许使用默认的chat模板,要求模型必须明确定义其对话模板。
技术分析
vLLM与Chat Template的关系
vLLM作为高性能推理框架,在处理对话请求时会依赖transformers库的chat template功能。当模型没有定义chat template时,vLLM无法正确处理对话格式,导致服务调用失败。
GLM-4v-9b的特殊性
GLM-4v-9b作为多模态大模型,其对话处理逻辑与传统纯文本模型有所不同。在原始模型配置中,可能没有包含完整的chat template定义,这导致了与最新版transformers的兼容性问题。
解决方案
临时解决方案
- 降级transformers版本至4.43或更早版本
- 在启动vLLM服务时添加--disable-chat-template参数(如果vLLM支持)
长期解决方案
为GLM-4v-9b模型添加正确的chat template定义。这需要:
- 理解GLM-4v-9b的对话格式要求
- 在tokenizer_config.json中添加合适的chat_template字段
- 确保模板能正确处理系统消息、用户消息和助手回复
最佳实践建议
- 模型部署前检查:在部署前检查模型是否包含完整的chat template配置
- 版本兼容性测试:测试transformers、vLLM和模型版本间的兼容性
- 自定义模板:对于特殊对话格式需求,考虑实现自定义chat template
- 监控日志:部署后密切监控服务日志,及时发现类似问题
总结
GLM-4v-9b模型与vLLM的集成问题反映了大型语言模型部署中的常见挑战。随着transformers等库的更新,对模型配置的要求也在不断提高。开发者需要关注这些变化,及时调整模型配置,确保服务稳定性。对于GLM系列模型,建议官方维护团队在模型发布时包含完整的chat template配置,以简化部署流程。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00