nnUNet在CPU推理模式下遇到的张量操作问题及解决方案
问题背景
在医学图像分割领域,nnUNet是一个广泛使用的自配置深度学习框架。近期有用户在本地CPU环境下运行nnUNet进行图像标注时,遇到了一个关于张量操作的运行时错误。该错误表现为"RuntimeError: Inplace update to inference tensor outside InferenceMode is not allowed",导致预测过程中断。
问题分析
这个问题的根源在于nnUNet在推理过程中对张量进行的原地(inplace)更新操作。具体来说,在预测过程中,框架会执行类似prediction += self.predict_sliding_window_return_logits(data).to('cpu')的操作。这种操作在GPU环境下可以正常工作,因为GPU会自动处理张量的内存管理。然而在CPU环境下,PyTorch对推理模式下的张量有更严格的限制,不允许进行原地更新操作。
技术细节
PyTorch的推理模式(InferenceMode)是一种特殊的上下文管理器,它优化了推理过程中的内存使用和计算效率。在这个模式下,PyTorch会禁用自动梯度计算和一些内存检查,以提高性能。然而,这也意味着某些操作(如原地更新)会受到限制,因为这些操作可能会破坏计算图的完整性或导致不可预测的内存行为。
解决方案
针对这个问题,有两种可行的解决方案:
-
代码修改方案: 在
predict_from_raw_data.py文件中,找到相关代码行(约492行和494行),在张量操作后添加.clone()方法。例如将prediction += ...修改为prediction = prediction + ...clone()。这种方法会创建一个新的张量而不是原地更新,从而避免错误。 -
运行环境方案: 更推荐的做法是在GPU环境下运行推理过程。GPU不仅能够避免这个特定的错误,还能显著提高推理速度。对于医学图像分割这种计算密集型任务,GPU通常能提供10倍以上的性能提升。
实施建议
对于需要在CPU环境下运行的用户,建议:
- 从源码安装nnUNet而非使用PyPI包,以便进行必要的代码修改
- 在修改代码时注意保持其他功能的完整性
- 考虑使用更轻量级的模型配置以减少CPU负载
对于有条件使用GPU的用户,强烈建议:
- 配置CUDA环境
- 使用GPU进行推理
- 考虑使用服务器资源进行批量预测
总结
这个案例展示了深度学习框架在不同硬件环境下可能遇到的兼容性问题。理解PyTorch在不同模式下的行为差异对于解决这类问题至关重要。对于nnUNet用户而言,在CPU环境下进行推理需要特别注意张量操作的限制,而最佳实践仍然是利用GPU的计算能力来获得更好的性能和稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00