nnUNet在CPU推理模式下遇到的张量操作问题及解决方案
问题背景
在医学图像分割领域,nnUNet是一个广泛使用的自配置深度学习框架。近期有用户在本地CPU环境下运行nnUNet进行图像标注时,遇到了一个关于张量操作的运行时错误。该错误表现为"RuntimeError: Inplace update to inference tensor outside InferenceMode is not allowed",导致预测过程中断。
问题分析
这个问题的根源在于nnUNet在推理过程中对张量进行的原地(inplace)更新操作。具体来说,在预测过程中,框架会执行类似prediction += self.predict_sliding_window_return_logits(data).to('cpu')的操作。这种操作在GPU环境下可以正常工作,因为GPU会自动处理张量的内存管理。然而在CPU环境下,PyTorch对推理模式下的张量有更严格的限制,不允许进行原地更新操作。
技术细节
PyTorch的推理模式(InferenceMode)是一种特殊的上下文管理器,它优化了推理过程中的内存使用和计算效率。在这个模式下,PyTorch会禁用自动梯度计算和一些内存检查,以提高性能。然而,这也意味着某些操作(如原地更新)会受到限制,因为这些操作可能会破坏计算图的完整性或导致不可预测的内存行为。
解决方案
针对这个问题,有两种可行的解决方案:
-
代码修改方案: 在
predict_from_raw_data.py文件中,找到相关代码行(约492行和494行),在张量操作后添加.clone()方法。例如将prediction += ...修改为prediction = prediction + ...clone()。这种方法会创建一个新的张量而不是原地更新,从而避免错误。 -
运行环境方案: 更推荐的做法是在GPU环境下运行推理过程。GPU不仅能够避免这个特定的错误,还能显著提高推理速度。对于医学图像分割这种计算密集型任务,GPU通常能提供10倍以上的性能提升。
实施建议
对于需要在CPU环境下运行的用户,建议:
- 从源码安装nnUNet而非使用PyPI包,以便进行必要的代码修改
- 在修改代码时注意保持其他功能的完整性
- 考虑使用更轻量级的模型配置以减少CPU负载
对于有条件使用GPU的用户,强烈建议:
- 配置CUDA环境
- 使用GPU进行推理
- 考虑使用服务器资源进行批量预测
总结
这个案例展示了深度学习框架在不同硬件环境下可能遇到的兼容性问题。理解PyTorch在不同模式下的行为差异对于解决这类问题至关重要。对于nnUNet用户而言,在CPU环境下进行推理需要特别注意张量操作的限制,而最佳实践仍然是利用GPU的计算能力来获得更好的性能和稳定性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00