nnUNet项目中的GPU推理问题分析与解决方案
问题背景
在使用nnUNet进行医学图像分割时,用户在进行GPU模式下的推理过程中遇到了一个特定错误。该错误表现为在加载模型状态字典时出现"Inplace update to inference tensor outside InferenceMode is not allowed"的异常,而CPU模式下却能正常运行。
错误现象
当用户执行nnUNetv2_predict命令进行2D图像分割推理时,系统能够成功处理第一个样本,但在处理第二个样本时出现了以下关键错误信息:
RuntimeError: Error(s) in loading state_dict for PlainConvUNet:
While copying the parameter named "encoder.stages.0.0.convs.0.norm.running_mean", whose dimensions in the model are torch.Size([32]) and whose dimensions in the checkpoint are torch.Size([32]), an exception occurred : ('Inplace update to inference tensor outside InferenceMode is not allowed.You can make a clone to get a normal tensor before doing inplace update.See https://github.com/pytorch/rfcs/pull/17 for more details.',)
问题原因分析
-
PyTorch推理模式限制:这个错误源于PyTorch对推理模式下张量操作的严格限制。在PyTorch 1.9.0及更高版本中,引入了torch.inference_mode()上下文管理器,它比torch.no_grad()更严格,会创建不可变的推理张量。
-
模型参数加载冲突:当尝试在非推理模式下修改推理张量时(如加载模型参数),PyTorch会阻止这种原地更新操作,以防止潜在的错误。
-
nnUNet版本问题:用户发现这个问题在nnUNet的最新版本中已经修复,因为predict_from_raw_data.py文件在4天前移除了相关的问题代码。
解决方案
-
升级nnUNet版本:最简单的解决方案是更新到最新版本的nnUNet,开发者已经修复了这个问题。
-
手动修改代码:如果暂时无法升级,可以手动修改predict_from_raw_data.py文件:
- 移除或修改与torch.inference_mode()相关的代码
- 确保模型参数加载不在严格的推理模式下进行
-
临时解决方案:
- 使用CPU模式运行(虽然速度较慢,但可以正常工作)
- 降低PyTorch版本(不推荐,可能引入其他兼容性问题)
技术建议
-
版本控制:在使用深度学习框架时,保持框架和工具包版本的匹配非常重要。PyTorch的更新可能会引入新的特性或限制,需要相应调整代码。
-
错误处理:对于批量处理大量数据的推理任务,建议实现更健壮的错误处理机制,确保一个样本的失败不会影响整个批次的处理。
-
性能权衡:虽然GPU推理速度更快,但在某些特殊情况下,CPU模式可能更稳定。对于关键任务,可以考虑先在小批量数据上测试GPU推理的稳定性。
总结
这个案例展示了深度学习框架更新可能带来的兼容性问题。nnUNet团队已经及时响应并修复了这个问题,体现了开源项目的活跃维护。对于用户来说,及时更新到最新稳定版本是避免类似问题的最佳实践。同时,理解PyTorch不同模式下的行为差异,对于深度学习开发者也十分重要。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C084
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00