nnUNet项目中的GPU推理问题分析与解决方案
问题背景
在使用nnUNet进行医学图像分割时,用户在进行GPU模式下的推理过程中遇到了一个特定错误。该错误表现为在加载模型状态字典时出现"Inplace update to inference tensor outside InferenceMode is not allowed"的异常,而CPU模式下却能正常运行。
错误现象
当用户执行nnUNetv2_predict命令进行2D图像分割推理时,系统能够成功处理第一个样本,但在处理第二个样本时出现了以下关键错误信息:
RuntimeError: Error(s) in loading state_dict for PlainConvUNet:
While copying the parameter named "encoder.stages.0.0.convs.0.norm.running_mean", whose dimensions in the model are torch.Size([32]) and whose dimensions in the checkpoint are torch.Size([32]), an exception occurred : ('Inplace update to inference tensor outside InferenceMode is not allowed.You can make a clone to get a normal tensor before doing inplace update.See https://github.com/pytorch/rfcs/pull/17 for more details.',)
问题原因分析
-
PyTorch推理模式限制:这个错误源于PyTorch对推理模式下张量操作的严格限制。在PyTorch 1.9.0及更高版本中,引入了torch.inference_mode()上下文管理器,它比torch.no_grad()更严格,会创建不可变的推理张量。
-
模型参数加载冲突:当尝试在非推理模式下修改推理张量时(如加载模型参数),PyTorch会阻止这种原地更新操作,以防止潜在的错误。
-
nnUNet版本问题:用户发现这个问题在nnUNet的最新版本中已经修复,因为predict_from_raw_data.py文件在4天前移除了相关的问题代码。
解决方案
-
升级nnUNet版本:最简单的解决方案是更新到最新版本的nnUNet,开发者已经修复了这个问题。
-
手动修改代码:如果暂时无法升级,可以手动修改predict_from_raw_data.py文件:
- 移除或修改与torch.inference_mode()相关的代码
- 确保模型参数加载不在严格的推理模式下进行
-
临时解决方案:
- 使用CPU模式运行(虽然速度较慢,但可以正常工作)
- 降低PyTorch版本(不推荐,可能引入其他兼容性问题)
技术建议
-
版本控制:在使用深度学习框架时,保持框架和工具包版本的匹配非常重要。PyTorch的更新可能会引入新的特性或限制,需要相应调整代码。
-
错误处理:对于批量处理大量数据的推理任务,建议实现更健壮的错误处理机制,确保一个样本的失败不会影响整个批次的处理。
-
性能权衡:虽然GPU推理速度更快,但在某些特殊情况下,CPU模式可能更稳定。对于关键任务,可以考虑先在小批量数据上测试GPU推理的稳定性。
总结
这个案例展示了深度学习框架更新可能带来的兼容性问题。nnUNet团队已经及时响应并修复了这个问题,体现了开源项目的活跃维护。对于用户来说,及时更新到最新稳定版本是避免类似问题的最佳实践。同时,理解PyTorch不同模式下的行为差异,对于深度学习开发者也十分重要。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00