PaddleDetection中PP-YOLOE-R训练自定义数据集时COCO格式标注问题解析
问题背景
在使用PaddleDetection 2.7版本训练PP-YOLOE-R模型时,用户遇到了一个关于自定义数据集标注格式的问题。系统报错提示"not found any coco record in coco/annotations/voc_train.json",这表明程序无法正确读取COCO格式的标注文件。
问题分析
从用户提供的标注示例可以看出,这是一个旋转目标检测任务。标注文件中包含了旋转框的标注信息(通过segmentation字段表示),但bbox字段为空数组。PP-YOLOE-R作为旋转目标检测模型,理论上应该支持这种标注方式。
问题的核心在于PaddleDetection的数据加载逻辑。在默认实现中,数据加载器会检查标注记录是否有效,而这一检查主要依赖于bbox字段的存在和有效性。当bbox字段为空时,数据加载器会认为这是一条无效记录,从而导致报错。
解决方案
要解决这个问题,需要对数据加载逻辑进行适当修改。具体来说,可以采取以下两种方法:
-
补全bbox字段:虽然旋转目标检测主要使用segmentation信息,但为了兼容现有代码,可以为每个标注对象计算一个包含旋转框的最小水平外接矩形,填充到bbox字段中。
-
修改数据加载逻辑:更彻底的解决方案是修改数据加载器的过滤逻辑,使其能够识别并处理仅包含segmentation信息的标注记录。这需要修改COCO数据加载器的实现,特别是检查标注记录有效性的部分。
技术实现细节
对于选择修改数据加载逻辑的方案,主要需要关注以下几个关键点:
-
在COCO数据加载器中,需要调整对标注记录有效性的判断标准,使其能够识别旋转框标注。
-
对于旋转目标检测任务,应该优先使用segmentation字段中的信息,当该字段存在有效值时,即使bbox字段为空,也应视为有效记录。
-
需要确保后续的数据处理流程能够正确解析旋转框的标注信息,并将其转换为模型训练所需的格式。
最佳实践建议
-
对于旋转目标检测任务,建议同时提供水平外接矩形(bbox)和旋转框(segmentation)信息,以最大限度地保证兼容性。
-
如果确实只需要旋转框信息,建议在自定义数据集中明确标注这一特性,并相应调整数据加载和处理逻辑。
-
在修改框架代码时,建议通过继承原有类并重写相关方法的方式实现,而不是直接修改框架源代码,这样便于后续的维护和升级。
总结
PaddleDetection作为一款优秀的深度学习检测框架,在处理特殊标注格式时可能需要一些定制化调整。理解框架的数据加载机制并根据实际需求进行适当修改,是解决这类问题的关键。对于旋转目标检测等特殊任务,合理设计标注格式并相应调整数据处理流程,可以显著提高开发效率和模型性能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









