llama_cpp_for_codeshell 项目使用教程
1. 项目介绍
llama_cpp_for_codeshell
是一个基于 C/C++ 实现的 CodeShell 模型项目。该项目的主要目标是使用 4-bit 整数量化在 MacBook 上运行 LLaMA 模型。通过该项目,开发者可以在本地环境中高效地运行和测试 CodeShell 模型,支持多种量化方法和平台,包括 Mac OS、Linux 和 Windows。
2. 项目快速启动
2.1 环境准备
确保你的开发环境满足以下要求:
- 操作系统:Mac OS、Linux 或 Windows
- 编译工具:CMake、Make
- 依赖库:OpenBLAS、CUDA(可选)
2.2 克隆项目
首先,克隆 llama_cpp_for_codeshell
项目到本地:
git clone https://github.com/WisdomShell/llama_cpp_for_codeshell.git
cd llama_cpp_for_codeshell
2.3 编译项目
2.3.1 使用 Make 编译
在 Linux 或 MacOS 上,可以直接使用 Make 进行编译:
make
在 Windows 上,可以下载 w64devkit
并配置好环境后,使用 Make 进行编译:
make LLAMA_OPENBLAS=1
2.3.2 使用 CMake 编译
创建并进入 build 目录,然后使用 CMake 进行编译:
mkdir build
cd build
cmake ..
cmake --build . --config Release
2.4 运行模型
编译完成后,可以使用以下命令运行模型:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
3. 应用案例和最佳实践
3.1 本地推理
在本地环境中,开发者可以使用 llama_cpp_for_codeshell
项目进行模型的推理。例如,使用以下命令进行交互式推理:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -i -p "How many letters are there in the English alphabet?"
3.2 使用量化模型
项目支持多种量化方法,开发者可以根据需求选择合适的量化方法。例如,使用 q4_0
量化方法:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "What is the most common way of transportation in Amsterdam?"
3.3 使用 GPU 加速
如果系统支持 CUDA,可以使用 CUDA 进行加速推理:
make LLAMA_CUBLAS=1
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf --n-gpu-layers 1
4. 典型生态项目
4.1 CodeShell VSCode 插件
codeshell-vscode
是一个基于 CodeShell 模型开发的 Visual Studio Code 智能编码助手插件。该插件支持多种编程语言,提供代码补全、代码解释、代码优化等功能。
4.2 OpenLLaMA
OpenLLaMA
是一个开源的 LLaMA 模型复现项目,使用与 LLaMA 相同的架构,可以作为 LLaMA 模型的替代品。开发者可以使用 llama_cpp_for_codeshell
项目在本地运行 OpenLLaMA 模型。
4.3 GPT4All
GPT4All
是一个基于 LLaMA 模型的开源项目,提供了多种量化和优化的模型。开发者可以使用 llama_cpp_for_codeshell
项目在本地运行 GPT4All 模型。
通过以上步骤,开发者可以快速上手 llama_cpp_for_codeshell
项目,并在本地环境中进行高效的模型推理和开发。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









