llama_cpp_for_codeshell 项目使用教程
1. 项目介绍
llama_cpp_for_codeshell 是一个基于 C/C++ 实现的 CodeShell 模型项目。该项目的主要目标是使用 4-bit 整数量化在 MacBook 上运行 LLaMA 模型。通过该项目,开发者可以在本地环境中高效地运行和测试 CodeShell 模型,支持多种量化方法和平台,包括 Mac OS、Linux 和 Windows。
2. 项目快速启动
2.1 环境准备
确保你的开发环境满足以下要求:
- 操作系统:Mac OS、Linux 或 Windows
- 编译工具:CMake、Make
- 依赖库:OpenBLAS、CUDA(可选)
2.2 克隆项目
首先,克隆 llama_cpp_for_codeshell 项目到本地:
git clone https://github.com/WisdomShell/llama_cpp_for_codeshell.git
cd llama_cpp_for_codeshell
2.3 编译项目
2.3.1 使用 Make 编译
在 Linux 或 MacOS 上,可以直接使用 Make 进行编译:
make
在 Windows 上,可以下载 w64devkit 并配置好环境后,使用 Make 进行编译:
make LLAMA_OPENBLAS=1
2.3.2 使用 CMake 编译
创建并进入 build 目录,然后使用 CMake 进行编译:
mkdir build
cd build
cmake ..
cmake --build . --config Release
2.4 运行模型
编译完成后,可以使用以下命令运行模型:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e
3. 应用案例和最佳实践
3.1 本地推理
在本地环境中,开发者可以使用 llama_cpp_for_codeshell 项目进行模型的推理。例如,使用以下命令进行交互式推理:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -i -p "How many letters are there in the English alphabet?"
3.2 使用量化模型
项目支持多种量化方法,开发者可以根据需求选择合适的量化方法。例如,使用 q4_0 量化方法:
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "What is the most common way of transportation in Amsterdam?"
3.3 使用 GPU 加速
如果系统支持 CUDA,可以使用 CUDA 进行加速推理:
make LLAMA_CUBLAS=1
./main -m models/llama-13b-v2/ggml-model-q4_0.gguf --n-gpu-layers 1
4. 典型生态项目
4.1 CodeShell VSCode 插件
codeshell-vscode 是一个基于 CodeShell 模型开发的 Visual Studio Code 智能编码助手插件。该插件支持多种编程语言,提供代码补全、代码解释、代码优化等功能。
4.2 OpenLLaMA
OpenLLaMA 是一个开源的 LLaMA 模型复现项目,使用与 LLaMA 相同的架构,可以作为 LLaMA 模型的替代品。开发者可以使用 llama_cpp_for_codeshell 项目在本地运行 OpenLLaMA 模型。
4.3 GPT4All
GPT4All 是一个基于 LLaMA 模型的开源项目,提供了多种量化和优化的模型。开发者可以使用 llama_cpp_for_codeshell 项目在本地运行 GPT4All 模型。
通过以上步骤,开发者可以快速上手 llama_cpp_for_codeshell 项目,并在本地环境中进行高效的模型推理和开发。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C050
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00