OpenChem 开源项目教程
1. 项目介绍
OpenChem 是一个基于 PyTorch 的深度学习工具包,专门用于计算化学和药物设计研究。其主要目标是使深度学习模型成为计算化学和药物设计研究人员的易用工具。OpenChem 提供了模块化的设计,统一的 API,使得不同模块可以轻松组合使用。此外,OpenChem 还支持多 GPU 训练、数据预处理和 Tensorboard 支持等功能。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统满足以下要求:
- 现代 NVIDIA GPU,计算能力 3.5 或更高
- Python 3.5 或更高版本(推荐使用 Anaconda 发行版)
- CUDA 9.0 或更高版本
2.2 安装步骤
-
克隆 OpenChem 仓库:
git clone https://github.com/Mariewelt/OpenChem.git cd OpenChem -
创建并激活 Conda 环境:
conda create --name OpenChem python=3.7 conda activate OpenChem -
安装依赖包:
conda install --yes --file requirements.txt conda install -c rdkit rdkit nox cairo conda install pytorch torchvision -c pytorch pip install -e .
2.3 快速启动示例
以下是一个简单的示例,展示如何使用 OpenChem 进行分子分类任务:
from openchem.models.openchem_model import OpenChemModel
from openchem.data.utils import get_data
from openchem.data.smiles_data_layer import SmilesDataset
from openchem.modules.embeddings.basic_embedding import Embedding
from openchem.modules.encoders.rnn_encoder import RNNEncoder
from openchem.modules.mlp.openchem_mlp import OpenChemMLP
# 加载数据
data = get_data('path_to_your_data.csv')
dataset = SmilesDataset(data, 'SMILES', 'Label')
# 定义模型
embedding = Embedding(vocab_size=dataset.vocab_size, embedding_dim=128)
encoder = RNNEncoder(input_dim=128, hidden_dim=256, n_layers=2, dropout=0.2)
mlp = OpenChemMLP(input_dim=256, n_layers=2, hidden_dim=128, output_dim=1)
model = OpenChemModel(embedding, encoder, mlp)
# 训练模型
model.fit(dataset, n_epochs=10)
3. 应用案例和最佳实践
3.1 分子分类
OpenChem 可以用于分子分类任务,例如预测分子是否具有某种性质。通过使用 RNN 编码器和 MLP 分类器,可以有效地处理 SMILES 字符串数据。
3.2 回归任务
除了分类任务,OpenChem 还可以用于回归任务,例如预测分子的溶解度或毒性。通过调整模型的输出层,可以轻松地将分类模型转换为回归模型。
3.3 多任务学习
OpenChem 支持多任务学习,可以同时训练多个任务,例如同时预测分子的多个性质。通过使用多任务损失函数,可以提高模型的泛化能力。
4. 典型生态项目
4.1 RDKit
RDKit 是一个开源的化学信息学库,广泛用于化学和药物设计领域。OpenChem 与 RDKit 集成良好,可以方便地进行分子数据的预处理和后处理。
4.2 PyTorch
OpenChem 基于 PyTorch 构建,充分利用了 PyTorch 的灵活性和高效性。PyTorch 提供了强大的自动微分功能和动态计算图,使得模型开发和调试更加便捷。
4.3 Tensorboard
OpenChem 支持 Tensorboard,可以方便地进行模型训练的可视化。通过 Tensorboard,可以实时监控模型的训练过程,分析模型的性能和收敛情况。
通过本教程,您应该能够快速上手 OpenChem 项目,并了解其在计算化学和药物设计中的应用。希望 OpenChem 能够成为您在深度学习研究中的得力助手!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00