理解g-benton/loss-surface-simplexes项目中的基础MLP模型实现
2025-07-06 23:34:52作者:凌朦慧Richard
本文主要分析g-benton/loss-surface-simplexes项目中basic_mlps.py文件实现的基础多层感知机(MLP)模型及其在单纯形空间中的变体实现。
基础MLP网络结构
BasicNet类实现了一个标准的全连接神经网络,具有以下特点:
-
网络架构:包含8个全连接层(fc1-fc8),其中前7层为隐藏层,最后一层为输出层
-
参数配置:
- 输入维度in_dim默认为2
- 隐藏层大小hidden_size默认为10
- 输出维度out_dim需要显式指定
- 激活函数默认为ReLU
- 每层都包含偏置项(bias=True)
-
前向传播:每层线性变换后都接激活函数,最后一层不接激活函数(适用于回归任务或后续接softmax等)
class BasicNet(nn.Module):
def __init__(self, out_dim, in_dim=2, hidden_size=10,
activation=torch.nn.ReLU(), bias=True):
super(BasicNet, self).__init__()
# 初始化8个全连接层
...
def forward(self, x):
# 标准的前向传播流程
...
单纯形空间MLP变体
BasicSimplex类实现了在单纯形空间中的MLP变体,与BasicNet的主要区别在于:
- 使用SimplexLinear层:替代标准的nn.Linear,这些层接收额外的fix_points和coeffs_t参数
- 单纯形参数化:网络权重被参数化为单纯形顶点(fix_points)的凸组合
- 动态权重计算:前向传播时通过coeffs_t参数动态计算权重
class BasicSimplex(nn.Module):
def __init__(self, out_dim, fix_points, in_dim=2, hidden_size=10,
activation=torch.nn.ReLU(), bias=True):
super(BasicSimplex, self).__init__()
# 初始化8个SimplexLinear层
...
def forward(self, x, coeffs_t):
# 包含单纯形系数coeffs_t的前向传播
...
技术细节解析
-
单纯形网络的数学原理:
- 传统网络的权重矩阵W被表示为W = Σ c_i V_i
- 其中V_i是固定顶点(fix_points),c_i是凸组合系数(coeffs_t)
- 这种表示允许在固定顶点构成的凸包内探索不同权重配置
-
实现特点:
- 网络结构深度相同(8层),便于比较
- 保持相同的激活函数和偏置配置
- 单纯形版本需要额外的初始化参数fix_points
-
应用场景:
- 研究损失曲面在不同权重配置下的行为
- 探索模型在参数空间中的优化路径
- 分析神经网络在凸组合下的表现特性
使用建议
- 对于标准任务,使用BasicNet即可
- 当需要研究损失曲面或参数空间特性时,使用BasicSimplex
- 可以通过调整hidden_size控制模型容量
- 修改activation参数可以探索不同非线性特性的影响
这两个基础MLP实现为研究神经网络在标准空间和单纯形空间中的行为提供了简单但灵活的实验平台。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
暂无简介
Dart
633
143
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
194
212