Tiny CUDA Neural Networks 项目下载与安装教程
2024-12-04 07:55:07作者:尤峻淳Whitney
1. 项目介绍
Tiny CUDA Neural Networks(简称TCNN)是一个轻量级的、自包含的用于训练和查询神经网络的框架。该框架特别包含一个闪电般的“完全融合”多层感知器(MLP),一个多分辨率哈希编码以及支持各种输入编码、损失和优化器。
2. 项目下载位置
项目托管在GitHub上,下载地址为:https://github.com/NVlabs/tiny-cuda-nn.git
3. 项目安装环境配置
在开始安装之前,需要确保您的系统满足以下要求:
- NVIDIA GPU(具备tensor核心的GPU能提升性能)
- C++14兼容编译器(推荐使用Windows下的Visual Studio 2019或2022,Linux下的GCC/G++ 8或更高版本)
- 最新版本的CUDA(Windows推荐CUDA 11.5或更高版本,Linux推荐CUDA 10.2或更高版本)
- CMake v3.21或更高版本
以下是环境配置的图片示例:
# 示例:Linux下安装CUDA
sudo apt-get install build-essential git
# 添加CUDA到PATH
export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"
4. 项目安装方式
安装步骤如下:
-
克隆项目及其子模块:
git clone --recursive https://github.com/NVlabs/tiny-cuda-nn.git cd tiny-cuda-nn -
使用CMake构建项目:
cmake -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo cmake --build build --config RelWithDebInfo -j如果编译失败或不稳定,尝试去掉
-j参数。
5. 项目处理脚本
根据项目官方文档,可以通过以下示例脚本进行模型的训练和查询:
// 配置模型
nlohmann::json config = ...; // 这里省略具体的配置内容
using namespace tcnn;
auto model = create_from_config(n_input_dims, n_output_dims, config);
// 训练模型
GPUMatrix<float> training_batch_inputs(n_input_dims, batch_size);
GPUMatrix<float> training_batch_targets(n_output_dims, batch_size);
for (int i = 0; i < n_training_steps; ++i) {
// ...生成训练批次数据
float loss;
model.trainer->training_step(training_batch_inputs, training_batch_targets, &loss);
std::cout << "iteration=" << i << " loss=" << loss << std::endl;
}
// 使用模型进行推理
GPUMatrix<float> inference_inputs(n_input_dims, batch_size);
// ...生成推理数据
GPUMatrix<float> inference_outputs(n_output_dims, batch_size);
model.network->inference(inference_inputs, inference_outputs);
以上就是关于Tiny CUDA Neural Networks项目的下载与安装教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0134
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
498
3.66 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
309
134
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
870
482
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882