首页
/ Tiny CUDA Neural Networks 项目下载与安装教程

Tiny CUDA Neural Networks 项目下载与安装教程

2024-12-04 10:12:00作者:尤峻淳Whitney

1. 项目介绍

Tiny CUDA Neural Networks(简称TCNN)是一个轻量级的、自包含的用于训练和查询神经网络的框架。该框架特别包含一个闪电般的“完全融合”多层感知器(MLP),一个多分辨率哈希编码以及支持各种输入编码、损失和优化器。

2. 项目下载位置

项目托管在GitHub上,下载地址为:https://github.com/NVlabs/tiny-cuda-nn.git

3. 项目安装环境配置

在开始安装之前,需要确保您的系统满足以下要求:

  • NVIDIA GPU(具备tensor核心的GPU能提升性能)
  • C++14兼容编译器(推荐使用Windows下的Visual Studio 2019或2022,Linux下的GCC/G++ 8或更高版本)
  • 最新版本的CUDA(Windows推荐CUDA 11.5或更高版本,Linux推荐CUDA 10.2或更高版本)
  • CMake v3.21或更高版本

以下是环境配置的图片示例:

# 示例:Linux下安装CUDA
sudo apt-get install build-essential git
# 添加CUDA到PATH
export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"

4. 项目安装方式

安装步骤如下:

  1. 克隆项目及其子模块:

    git clone --recursive https://github.com/NVlabs/tiny-cuda-nn.git
    cd tiny-cuda-nn
    
  2. 使用CMake构建项目:

    cmake -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo
    cmake --build build --config RelWithDebInfo -j
    

    如果编译失败或不稳定,尝试去掉 -j 参数。

5. 项目处理脚本

根据项目官方文档,可以通过以下示例脚本进行模型的训练和查询:

// 配置模型
nlohmann::json config = ...; // 这里省略具体的配置内容
using namespace tcnn;
auto model = create_from_config(n_input_dims, n_output_dims, config);

// 训练模型
GPUMatrix<float> training_batch_inputs(n_input_dims, batch_size);
GPUMatrix<float> training_batch_targets(n_output_dims, batch_size);
for (int i = 0; i < n_training_steps; ++i) {
    // ...生成训练批次数据
    float loss;
    model.trainer->training_step(training_batch_inputs, training_batch_targets, &loss);
    std::cout << "iteration=" << i << " loss=" << loss << std::endl;
}

// 使用模型进行推理
GPUMatrix<float> inference_inputs(n_input_dims, batch_size);
// ...生成推理数据
GPUMatrix<float> inference_outputs(n_output_dims, batch_size);
model.network->inference(inference_inputs, inference_outputs);

以上就是关于Tiny CUDA Neural Networks项目的下载与安装教程。希望对您有所帮助!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
49
38
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
250
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
173
41
mybatis-plusmybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.com
Java
14
0
open-eBackupopen-eBackup
open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
69
52
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
395
102
HarmonyOS-Cangjie-CasesHarmonyOS-Cangjie-Cases
参考 HarmonyOS-Cases/Cases,提供仓颉开发鸿蒙 NEXT 应用的案例集
Cangjie
54
2
PDFMathTranslatePDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/Docker
Python
31
3
RuoYi-Cloud-Vue3RuoYi-Cloud-Vue3
🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
25
17
topiam-eiamtopiam-eiam
开源IDaas/IAM平台,用于管理企业内员工账号、权限、身份认证、应用访问,帮助整合部署在本地或云端的内部办公系统、业务系统及三方 SaaS 系统的所有身份,实现一个账号打通所有应用的服务。
Java
19
0