Tiny CUDA Neural Networks 项目下载与安装教程
2024-12-04 23:16:30作者:尤峻淳Whitney
1. 项目介绍
Tiny CUDA Neural Networks(简称TCNN)是一个轻量级的、自包含的用于训练和查询神经网络的框架。该框架特别包含一个闪电般的“完全融合”多层感知器(MLP),一个多分辨率哈希编码以及支持各种输入编码、损失和优化器。
2. 项目下载位置
项目托管在GitHub上,下载地址为:https://github.com/NVlabs/tiny-cuda-nn.git
3. 项目安装环境配置
在开始安装之前,需要确保您的系统满足以下要求:
- NVIDIA GPU(具备tensor核心的GPU能提升性能)
 - C++14兼容编译器(推荐使用Windows下的Visual Studio 2019或2022,Linux下的GCC/G++ 8或更高版本)
 - 最新版本的CUDA(Windows推荐CUDA 11.5或更高版本,Linux推荐CUDA 10.2或更高版本)
 - CMake v3.21或更高版本
 
以下是环境配置的图片示例:
# 示例:Linux下安装CUDA
sudo apt-get install build-essential git
# 添加CUDA到PATH
export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"
4. 项目安装方式
安装步骤如下:
- 
克隆项目及其子模块:
git clone --recursive https://github.com/NVlabs/tiny-cuda-nn.git cd tiny-cuda-nn - 
使用CMake构建项目:
cmake -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo cmake --build build --config RelWithDebInfo -j如果编译失败或不稳定,尝试去掉
-j参数。 
5. 项目处理脚本
根据项目官方文档,可以通过以下示例脚本进行模型的训练和查询:
// 配置模型
nlohmann::json config = ...; // 这里省略具体的配置内容
using namespace tcnn;
auto model = create_from_config(n_input_dims, n_output_dims, config);
// 训练模型
GPUMatrix<float> training_batch_inputs(n_input_dims, batch_size);
GPUMatrix<float> training_batch_targets(n_output_dims, batch_size);
for (int i = 0; i < n_training_steps; ++i) {
    // ...生成训练批次数据
    float loss;
    model.trainer->training_step(training_batch_inputs, training_batch_targets, &loss);
    std::cout << "iteration=" << i << " loss=" << loss << std::endl;
}
// 使用模型进行推理
GPUMatrix<float> inference_inputs(n_input_dims, batch_size);
// ...生成推理数据
GPUMatrix<float> inference_outputs(n_output_dims, batch_size);
model.network->inference(inference_inputs, inference_outputs);
以上就是关于Tiny CUDA Neural Networks项目的下载与安装教程。希望对您有所帮助!
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445