Tiny CUDA Neural Networks 项目下载与安装教程
2024-12-04 14:10:10作者:尤峻淳Whitney
1. 项目介绍
Tiny CUDA Neural Networks(简称TCNN)是一个轻量级的、自包含的用于训练和查询神经网络的框架。该框架特别包含一个闪电般的“完全融合”多层感知器(MLP),一个多分辨率哈希编码以及支持各种输入编码、损失和优化器。
2. 项目下载位置
项目托管在GitHub上,下载地址为:https://github.com/NVlabs/tiny-cuda-nn.git
3. 项目安装环境配置
在开始安装之前,需要确保您的系统满足以下要求:
- NVIDIA GPU(具备tensor核心的GPU能提升性能)
- C++14兼容编译器(推荐使用Windows下的Visual Studio 2019或2022,Linux下的GCC/G++ 8或更高版本)
- 最新版本的CUDA(Windows推荐CUDA 11.5或更高版本,Linux推荐CUDA 10.2或更高版本)
- CMake v3.21或更高版本
以下是环境配置的图片示例:
# 示例:Linux下安装CUDA
sudo apt-get install build-essential git
# 添加CUDA到PATH
export PATH="/usr/local/cuda-11.4/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-11.4/lib64:$LD_LIBRARY_PATH"
4. 项目安装方式
安装步骤如下:
-
克隆项目及其子模块:
git clone --recursive https://github.com/NVlabs/tiny-cuda-nn.git cd tiny-cuda-nn -
使用CMake构建项目:
cmake -B build -DCMAKE_BUILD_TYPE=RelWithDebInfo cmake --build build --config RelWithDebInfo -j如果编译失败或不稳定,尝试去掉
-j参数。
5. 项目处理脚本
根据项目官方文档,可以通过以下示例脚本进行模型的训练和查询:
// 配置模型
nlohmann::json config = ...; // 这里省略具体的配置内容
using namespace tcnn;
auto model = create_from_config(n_input_dims, n_output_dims, config);
// 训练模型
GPUMatrix<float> training_batch_inputs(n_input_dims, batch_size);
GPUMatrix<float> training_batch_targets(n_output_dims, batch_size);
for (int i = 0; i < n_training_steps; ++i) {
// ...生成训练批次数据
float loss;
model.trainer->training_step(training_batch_inputs, training_batch_targets, &loss);
std::cout << "iteration=" << i << " loss=" << loss << std::endl;
}
// 使用模型进行推理
GPUMatrix<float> inference_inputs(n_input_dims, batch_size);
// ...生成推理数据
GPUMatrix<float> inference_outputs(n_output_dims, batch_size);
model.network->inference(inference_inputs, inference_outputs);
以上就是关于Tiny CUDA Neural Networks项目的下载与安装教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19