dist-keras 项目教程
2024-09-15 06:54:15作者:郁楠烈Hubert
1. 项目介绍
dist-keras
是一个基于 Apache Spark 和 Keras 的分布式深度学习框架。它专注于实现“最先进的”分布式优化算法,使得新的分布式优化器可以轻松实现,从而让研究人员能够专注于研究。该框架支持多种分布式方法,如数据并行方法,能够显著减少模型的训练时间,并在某些情况下实现更好的统计模型性能。
2. 项目快速启动
安装
首先,确保你已经安装了 Apache Spark。然后,你可以通过以下两种方式安装 dist-keras
:
使用 pip 安装
pip install --upgrade dist-keras
从 GitHub 克隆并安装
git clone https://github.com/JoeriHermans/dist-keras
cd dist-keras
pip install -e .
配置环境变量
确保在你的 .bashrc
文件中设置了以下环境变量:
export SPARK_HOME=/usr/lib/spark
export PYTHONPATH="$SPARK_HOME/python/:$SPARK_HOME/python/lib/py4j-0.9-src.zip:$PYTHONPATH"
运行示例
你可以参考 examples
文件夹中的 workflow.ipynb
笔记本,它将引导你完成分布式深度学习的步骤,并展示如何处理“大数据”集。
jupyter notebook examples/workflow.ipynb
3. 应用案例和最佳实践
优化算法示例
ADAG (推荐)
from distkeras import ADAG
trainer = ADAG(
keras_model=mlp,
worker_optimizer=optimizer_mlp,
loss=loss_mlp,
metrics=["accuracy"],
num_workers=2,
batch_size=32,
communication_window=12,
num_epoch=1,
features_col="features",
label_col="label"
)
动态 SGD
from distkeras import DynSGD
trainer = DynSGD(
keras_model=mlp,
worker_optimizer=optimizer_mlp,
loss=loss_mlp,
metrics=["accuracy"],
num_workers=2,
batch_size=32,
communication_window=10,
num_epoch=1,
features_col="features",
label_col="label"
)
远程作业部署
from distkeras import Job
job = Job(
secret="your_secret",
job_name="your_job_name",
data_path="path_to_data",
num_executors=20,
num_processes=4,
trainer=trainer
)
job.send('http://yourcluster:[port]')
job.wait_completion()
trained_model = job.get_trained_model()
history = job.get_history()
4. 典型生态项目
Apache Spark
dist-keras
依赖于 Apache Spark 进行分布式计算。Spark 是一个快速且通用的集群计算系统,支持大规模数据处理。
Keras
Keras 是一个高级神经网络 API,能够运行在 TensorFlow、Theano 和 CNTK 之上。dist-keras
利用 Keras 的灵活性和易用性来构建和训练深度学习模型。
TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛用于构建和训练深度学习模型。dist-keras
支持 TensorFlow 作为后端。
Theano
Theano 是一个 Python 库,允许你定义、优化和评估涉及多维数组的数学表达式。dist-keras
也支持 Theano 作为后端。
通过这些生态项目,dist-keras
能够提供强大的分布式深度学习能力,帮助用户在大规模数据集上高效地训练深度学习模型。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K