Android Games Samples 项目教程
1. 项目介绍
Android Games Samples 是一个由 Google 维护的开源项目,旨在为开发者提供一系列示例项目,帮助他们了解和掌握在 Android 平台上开发游戏的各种技术和最佳实践。该项目包含了多个子项目,涵盖了从基础的游戏开发技术到高级的性能优化和 Google Play 服务的集成。
主要内容
- Android Game Development Kit (AGDK) 示例: 这些示例展示了如何集成和使用 Android Game Development Kit 库,包括 AGDE(Android Game Development Extension)和 AGDK Tunnel 等。
- TrivialKart 示例: 这是一个展示 Google Play 技术在 Android 游戏中的应用的示例,支持 Godot 和 Unity 引擎。
- Google Play Games for PC 示例: 这些示例专门针对 Google Play Games for PC 的开发,提供了 Unity 项目的配置工具。
- Unity 引擎示例: 展示了使用 Unity 引擎开发 Android 游戏时的最佳实践,特别是关于电源效率的优化。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆 Android Games Samples 项目到本地:
git clone https://github.com/android/games-samples.git
2.2 设置开发环境
确保你已经安装了以下工具:
- Android Studio
- Unity 引擎(如果需要使用 Unity 示例)
- Godot 引擎(如果需要使用 Godot 示例)
2.3 运行示例项目
以 TrivialKart
示例为例,进入 trivialkart/trivialkart-unity
目录,打开 Unity 项目并构建运行:
cd trivialkart/trivialkart-unity
在 Unity 编辑器中打开项目,选择 File -> Build Settings
,选择 Android 平台并点击 Build and Run
。
3. 应用案例和最佳实践
3.1 使用 AGDK 进行性能优化
AGDK 提供了多种工具和库,帮助开发者优化游戏性能。例如,agdk/adpf
示例展示了如何使用 Adaptive Performance APIs 来动态调整游戏的图形质量,以适应不同的设备性能。
3.2 集成 Google Play 服务
TrivialKart
示例展示了如何集成 Google Play 服务,包括 Google Play Billing、Google Play Games Services 和 Play Integrity。这些服务可以帮助开发者实现内购、成就系统和安全验证等功能。
3.3 电源效率优化
在 unity/power_efficiency_demo
示例中,开发者可以学习到如何在 Unity 引擎中实现电源效率的最佳实践,例如动态调整帧率、优化 GPU 使用等。
4. 典型生态项目
4.1 Android Game Development Kit (AGDK)
AGDK 是 Android 平台上的一个重要工具包,提供了多种库和工具,帮助开发者优化游戏性能和集成 Google Play 服务。
4.2 Google Play Games for PC
Google Play Games for PC 是一个允许开发者将 Android 游戏移植到 PC 平台的工具,提供了 Unity 项目的配置工具和示例。
4.3 Unity 引擎
Unity 是一个广泛使用的游戏引擎,特别适合跨平台开发。Android Games Samples 提供了多个 Unity 示例,帮助开发者掌握在 Unity 中开发 Android 游戏的最佳实践。
通过这些示例和教程,开发者可以快速上手 Android 游戏开发,并掌握各种高级技术和最佳实践。
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选









