Tenstorrent Metal项目v0.59.0-rc19版本技术解析
Tenstorrent Metal是一个专注于高性能计算和AI加速的开源项目,它提供了一套完整的工具链和框架,用于在Tenstorrent硬件平台上开发和优化深度学习模型。该项目包含了从底层硬件抽象到高层模型部署的全栈解决方案。
核心架构改进
本次发布的v0.59.0-rc19版本在系统架构方面做出了多项重要改进。首先是对设备初始化的优化,将固件构建和内存清理操作从设备初始化阶段移至MetalContext初始化阶段,这一改变显著提升了设备启动效率。同时,项目团队重构了设备池的初始化机制,移除了不必要的noexcept限定符,使错误处理更加灵活可靠。
在内存管理方面,项目引入了新的ND分片支持,为mesh设备和缓冲区提供了更灵活的内存分配策略。这一特性特别适合处理大规模张量运算场景,能够更好地利用硬件并行能力。此外,团队还优化了主机端缓冲区操作,将其隐藏在transform接口之后,提高了代码的安全性和可维护性。
性能优化与功能增强
本版本在多方面进行了性能优化。对于Topk操作,扩展了子核心网格支持,并充分利用列中的可用核心资源,显著提升了处理效率。Argmax操作也进行了调整,现在能够根据NOC宽度动态调整每个核心的处理单元数量,更好地适应不同硬件配置。
在路由算法方面,项目实现了动态路由与2D Push Fabric的集成,并优化了intermesh路由到下一个mesh的效率。这些改进使得数据在复杂网络拓扑中的传输更加高效。同时,团队还增强了Fabric功能,引入了FabricContext支持,改进了设备初始化流程,并增加了对TG网关上启动fabric的支持。
模型支持与算法改进
本次更新加强了对多种深度学习模型的支持。在Mobilenetv2和Yolov系列模型的部署方面进行了优化,特别是修复了Yolov8x demo中的问题。项目还集成了VAE解码器到SDv1-4 demo中,扩展了生成模型的应用场景。
在基础算法层面,团队改进了Untilize操作,修复了当每个核心输出通道超过256时的问题。对于除法运算,调整了测试范围并清理了相关代码。此外,还增加了对uint16数据类型的支持,包括乘法、按位或和异或操作,扩展了数据处理的灵活性。
测试与稳定性提升
为保障系统稳定性,本版本新增了多项测试用例。包括多设备Eltwise和TM压力测试、连接开关压力测试,以及针对2D Fabric的随机源/目标设备选择测试。这些测试帮助验证了系统在各种边界条件下的可靠性。
团队还修复了多个可能导致系统挂起的问题,包括Blackhole上的以太网ubench挂起和Llama TG解码在处理超过4k序列长度时的挂起问题。这些修复显著提升了系统的稳定性。
开发工具与基础设施
在开发工具方面,项目增加了对tt-mlir的C++代码生成emitc的测试基础设施,为编译器开发提供了更好的支持。同时,改进了性能测量工具,增加了在不同条件下测量性能的能力。
CI/CD流程也得到优化,包括调整Whisper CI demo目标以适应P100a主机,以及修复GTest查询的语法问题。这些改进使得开发流程更加顺畅高效。
总结
Tenstorrent Metal v0.59.0-rc19版本在系统架构、性能优化、模型支持和稳定性方面都取得了显著进展。这些改进不仅提升了现有功能的性能和可靠性,也为未来功能的扩展奠定了坚实基础。项目团队持续关注开发者体验和系统健壮性,通过引入新的测试用例和优化开发工具,确保项目能够满足日益复杂的AI计算需求。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00