Tenstorrent Metal v0.59.0-rc31 版本技术解析与架构演进
Tenstorrent Metal 是一个专注于高性能计算和人工智能加速的开源项目,其核心目标是为深度学习和大规模并行计算提供高效的硬件加速解决方案。该项目通过创新的架构设计和软件优化,显著提升了AI模型训练和推理的效率。
架构优化与核心改进
1. 分布式计算与Fabric架构增强
本次版本在Fabric架构方面进行了重大改进,新增了FabricContext功能模块,优化了设备初始化流程。Fabric架构是Tenstorrent Metal实现高效分布式计算的核心组件,它允许计算任务在多个处理单元间高效分发和协同工作。
技术团队特别增强了Fabric对TG网关的支持能力,这意味着系统现在可以更好地处理跨网关的通信和计算任务分配。同时,新增了对intermesh路由的内核启动支持,进一步提升了分布式计算的灵活性和性能。
2. 模型支持与性能优化
在模型支持方面,v0.59.0-rc31版本带来了多项重要更新:
- 新增了MistralForCausalLM类,专门针对vLLM框架进行了优化,提升了大型语言模型的推理效率
- 对Llama 3模型权重导入提供了支持,虽然这一功能在后续版本中暂时回退进行进一步优化
- 优化了RS fuse创建qkv heads的实现,这是Transformer架构中的关键操作,直接影响模型的自注意力机制性能
3. 内存管理与数据移动
内存管理方面,本版本对DistributeHostBuffer进行了重要改进,使其更好地支持TTNN集成。同时修复了one-to-all数据移动测试中的问题,通过减少核心使用数量来规避256个内核参数的限制。
全局循环缓冲区(global_circular_buffer)的实现也得到了简化,将头文件和实现文件合并,提高了代码的可维护性和执行效率。
测试与稳定性增强
1. 测试框架改进
技术团队新增了tt-mlir的C++代码生成emitc测试基础设施,为未来的编译器优化奠定了基础。同时修复了多个测试用例:
- 修复了fold初始化类型相关的问题
- 使test_fold_transpose能够在harvested BH配置下正常工作
- 解决了调试构建中assert dprint/watcher断言抛出的问题
2. 系统稳定性提升
针对系统稳定性,本版本解决了多个关键问题:
- 修复了TG演示中的挂起问题
- 解决了Llama TG解码在处理超过4k序列长度时的挂起问题
- 优化了程序运行时ID的处理,特别是在以太网微基准测试中
性能优化与工具链改进
1. 计算内核优化
- 实现了Llong/mm untilize操作,优化了数据布局转换的性能
- 启用了binary_ng对更多配置的支持,扩展了二进制操作的适用范围
- 修复了FMOD文档,确保开发者能够正确使用这一数学运算功能
2. 开发工具链
- 移除了GraySkull的大部分使用,简化了代码库
- 修复了GTest查询中的语法问题
- 清理了主分支中的错误和警告,提高了代码质量
总结
Tenstorrent Metal v0.59.0-rc31版本在分布式计算架构、模型支持、内存管理和系统稳定性等方面都取得了显著进展。这些改进不仅提升了系统的整体性能,也为开发者提供了更加稳定和高效的开发环境。特别是Fabric架构的增强和新型号模型的支持,将为AI和高性能计算应用带来更强大的加速能力。
技术团队在解决现有问题的同时,也在为未来的功能扩展奠定基础,如tt-mlir测试基础设施的建立和TTNN集成的准备工作。这些持续的技术演进体现了Tenstorrent Metal项目对高性能计算领域的前瞻性思考和扎实的技术积累。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00