首页
/ Narwhals项目v1.25.0版本发布:多后端数据处理能力再升级

Narwhals项目v1.25.0版本发布:多后端数据处理能力再升级

2025-07-06 09:39:45作者:柯茵沙

Narwhals是一个致力于为Python生态提供统一API接口的多后端数据处理框架,它允许开发者使用相同的代码操作不同的数据处理引擎,如Polars、DuckDB和Spark等。通过抽象底层实现细节,Narwhals让开发者能够专注于业务逻辑,而不必为不同引擎的API差异而烦恼。

核心功能增强

跨后端爆炸式展开功能

v1.25.0版本为DuckDB后端新增了LazyFrame.explode方法实现。这一功能允许用户将列表类型的列"爆炸"展开为多行,类似于Pandas中的explode操作。对于处理嵌套数据结构特别有用,比如JSON格式的数据。

日期时间处理能力扩展

新版本为DuckDB后端增加了.str.to_datetime方法,使得字符串到日期时间的转换更加便捷。同时,Spark后端现在也支持了日期(date)和日期时间(datetime)数据类型,并在nw.lit函数中增加了对dtype参数的支持,为时间序列数据处理提供了更强大的工具。

灵活的后端选择机制

.lazy()方法现在支持使用ModuleType和字符串来指定后端,这为开发者提供了更大的灵活性。例如,现在可以直接传入import duckdb得到的模块对象,或者简单地传递"duckdb"字符串来指定使用DuckDB引擎。

数据重塑功能增强

LazyFrame.unpivot方法现已支持Spark和DuckDB后端,这使得"宽表转长表"的操作可以在更多引擎上执行。这一功能在数据预处理和可视化准备阶段特别有用,可以方便地将多列数据转换为键值对形式。

性能优化与架构改进

简化的DuckDB分组操作

开发团队对DuckDB的分组(group-by)实现进行了简化,这可能会带来性能上的提升。虽然具体细节未在发布说明中详述,但这类底层优化通常能够减少内存使用和提高查询执行速度。

增强的收集(collect)方法

LazyFrame.collect方法现在支持通过backend参数指定执行引擎,并允许传递额外的关键字参数(**kwargs)。这一改进使得开发者能够更灵活地控制查询执行过程,针对不同后端传递特定的优化参数。

开发者体验提升

文档改进

团队对文档进行了多项修复和优化,特别是缩短了narwhals/expr.py中的示例代码,使其更加简洁易懂。此外,所有异常现在都继承自统一的NarwhalsError基类,这有助于开发者更一致地处理错误情况。

总结

Narwhals v1.25.0版本在多后端支持方面取得了显著进展,特别是在DuckDB和Spark引擎的功能覆盖上。日期时间处理、数据重塑等核心功能的增强,使得开发者能够更轻松地在不同引擎间迁移代码。同时,API的灵活性和文档的改进也大大提升了开发体验。

这一版本的发布标志着Narwhals项目在实现"编写一次,多后端运行"愿景的道路上又迈出了坚实的一步,为Python生态中的数据分析工作流提供了更强大的工具支持。

登录后查看全文
热门项目推荐
相关项目推荐