Narwhals项目v1.25.0版本发布:多后端数据处理能力再升级
Narwhals是一个致力于为Python生态提供统一API接口的多后端数据处理框架,它允许开发者使用相同的代码操作不同的数据处理引擎,如Polars、DuckDB和Spark等。通过抽象底层实现细节,Narwhals让开发者能够专注于业务逻辑,而不必为不同引擎的API差异而烦恼。
核心功能增强
跨后端爆炸式展开功能
v1.25.0版本为DuckDB后端新增了LazyFrame.explode方法实现。这一功能允许用户将列表类型的列"爆炸"展开为多行,类似于Pandas中的explode操作。对于处理嵌套数据结构特别有用,比如JSON格式的数据。
日期时间处理能力扩展
新版本为DuckDB后端增加了.str.to_datetime方法,使得字符串到日期时间的转换更加便捷。同时,Spark后端现在也支持了日期(date)和日期时间(datetime)数据类型,并在nw.lit函数中增加了对dtype参数的支持,为时间序列数据处理提供了更强大的工具。
灵活的后端选择机制
.lazy()方法现在支持使用ModuleType和字符串来指定后端,这为开发者提供了更大的灵活性。例如,现在可以直接传入import duckdb得到的模块对象,或者简单地传递"duckdb"字符串来指定使用DuckDB引擎。
数据重塑功能增强
LazyFrame.unpivot方法现已支持Spark和DuckDB后端,这使得"宽表转长表"的操作可以在更多引擎上执行。这一功能在数据预处理和可视化准备阶段特别有用,可以方便地将多列数据转换为键值对形式。
性能优化与架构改进
简化的DuckDB分组操作
开发团队对DuckDB的分组(group-by)实现进行了简化,这可能会带来性能上的提升。虽然具体细节未在发布说明中详述,但这类底层优化通常能够减少内存使用和提高查询执行速度。
增强的收集(collect)方法
LazyFrame.collect方法现在支持通过backend参数指定执行引擎,并允许传递额外的关键字参数(**kwargs)。这一改进使得开发者能够更灵活地控制查询执行过程,针对不同后端传递特定的优化参数。
开发者体验提升
文档改进
团队对文档进行了多项修复和优化,特别是缩短了narwhals/expr.py中的示例代码,使其更加简洁易懂。此外,所有异常现在都继承自统一的NarwhalsError基类,这有助于开发者更一致地处理错误情况。
总结
Narwhals v1.25.0版本在多后端支持方面取得了显著进展,特别是在DuckDB和Spark引擎的功能覆盖上。日期时间处理、数据重塑等核心功能的增强,使得开发者能够更轻松地在不同引擎间迁移代码。同时,API的灵活性和文档的改进也大大提升了开发体验。
这一版本的发布标志着Narwhals项目在实现"编写一次,多后端运行"愿景的道路上又迈出了坚实的一步,为Python生态中的数据分析工作流提供了更强大的工具支持。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00