Narwhals项目v1.25.0版本发布:多后端数据处理能力再升级
Narwhals是一个致力于为Python生态提供统一API接口的多后端数据处理框架,它允许开发者使用相同的代码操作不同的数据处理引擎,如Polars、DuckDB和Spark等。通过抽象底层实现细节,Narwhals让开发者能够专注于业务逻辑,而不必为不同引擎的API差异而烦恼。
核心功能增强
跨后端爆炸式展开功能
v1.25.0版本为DuckDB后端新增了LazyFrame.explode
方法实现。这一功能允许用户将列表类型的列"爆炸"展开为多行,类似于Pandas中的explode操作。对于处理嵌套数据结构特别有用,比如JSON格式的数据。
日期时间处理能力扩展
新版本为DuckDB后端增加了.str.to_datetime
方法,使得字符串到日期时间的转换更加便捷。同时,Spark后端现在也支持了日期(date)和日期时间(datetime)数据类型,并在nw.lit
函数中增加了对dtype参数的支持,为时间序列数据处理提供了更强大的工具。
灵活的后端选择机制
.lazy()
方法现在支持使用ModuleType
和字符串来指定后端,这为开发者提供了更大的灵活性。例如,现在可以直接传入import duckdb
得到的模块对象,或者简单地传递"duckdb"字符串来指定使用DuckDB引擎。
数据重塑功能增强
LazyFrame.unpivot
方法现已支持Spark和DuckDB后端,这使得"宽表转长表"的操作可以在更多引擎上执行。这一功能在数据预处理和可视化准备阶段特别有用,可以方便地将多列数据转换为键值对形式。
性能优化与架构改进
简化的DuckDB分组操作
开发团队对DuckDB的分组(group-by)实现进行了简化,这可能会带来性能上的提升。虽然具体细节未在发布说明中详述,但这类底层优化通常能够减少内存使用和提高查询执行速度。
增强的收集(collect)方法
LazyFrame.collect
方法现在支持通过backend参数指定执行引擎,并允许传递额外的关键字参数(**kwargs)。这一改进使得开发者能够更灵活地控制查询执行过程,针对不同后端传递特定的优化参数。
开发者体验提升
文档改进
团队对文档进行了多项修复和优化,特别是缩短了narwhals/expr.py
中的示例代码,使其更加简洁易懂。此外,所有异常现在都继承自统一的NarwhalsError
基类,这有助于开发者更一致地处理错误情况。
总结
Narwhals v1.25.0版本在多后端支持方面取得了显著进展,特别是在DuckDB和Spark引擎的功能覆盖上。日期时间处理、数据重塑等核心功能的增强,使得开发者能够更轻松地在不同引擎间迁移代码。同时,API的灵活性和文档的改进也大大提升了开发体验。
这一版本的发布标志着Narwhals项目在实现"编写一次,多后端运行"愿景的道路上又迈出了坚实的一步,为Python生态中的数据分析工作流提供了更强大的工具支持。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









