Narwhals项目v1.37.0版本发布:性能优化与新特性解析
Narwhals是一个专注于数据处理和分析的Python库,它提供了统一的数据操作接口,支持多种后端引擎(如Pandas、Dask、Spark等),让开发者可以用相同的API操作不同引擎的数据结构。该项目旨在简化跨引擎的数据处理工作流程,提高开发效率。
性能优化亮点
本次v1.37.0版本在性能方面做出了显著改进,特别是针对Apache Arrow Table的重命名操作。开发团队添加了一个快速路径(fastpath)优化,专门针对Arrow版本17及以上的情况。这种优化意味着当用户在处理大型数据集时,重命名列的操作将更加高效,减少了不必要的内存复制和计算开销。
对于数据工程师和分析师来说,这类底层优化虽然不改变API的使用方式,但在处理TB级数据时能带来明显的性能提升,特别是在ETL流水线中频繁使用列重命名操作的场景下。
核心功能增强
增强的fill_null功能
fill_null是数据处理中常用的功能,用于处理缺失值。新版本对此功能进行了多方面增强:
-
新增了对
fill_null(strategy=...).over(order_by=...)模式的支持,这与Pandas的操作方式保持了一致。这种语法糖让熟悉Pandas的用户能够更自然地使用Narwhals。 -
扩展了非空策略(non-null strategy)的支持范围,现在DuckDB和SparkLike后端也能使用各种填充策略。这意味着即使用户选择不同的计算引擎,也能获得一致的缺失值处理体验。
表达式作为分组键
v1.37.0版本引入了一个重要特性:允许使用表达式作为group_by操作的键。这意味着开发者现在可以编写更灵活的分组逻辑,例如:
df.group_by(pl.col("date").dt.year()).agg(...)
这种改进大大增强了分组操作的表达能力,使得复杂的数据聚合变得更加简洁和直观。
Spark Connect支持
对于Spark用户来说,本次更新增加了对Spark Connect的支持。Spark Connect是Spark 3.4引入的轻量级客户端-服务器架构,它允许远程连接到Spark集群而不需要本地的Spark环境。这一特性使得Narwhals在云原生和分布式环境中的应用更加灵活。
问题修复与稳定性改进
开发团队修复了PySpark在窗口操作时可能出现的"no partition"警告问题。这类警告虽然不影响功能,但会干扰日志分析和监控。修复后,生产环境中的日志将更加干净,便于问题排查。
代码质量与维护改进
在代码库维护方面,团队进行了多项内部改进:
-
简化了类型注解,特别是
__getitem__方法的类型提示,提高了代码的可读性和IDE的支持度。 -
优化了Dask相关的导入方式,避免了一些潜在的混淆。
-
重构了版本管理相关的工具函数,引入了
Version.dtypes和Version.namespace等更清晰的API。
这些内部改进虽然不影响最终用户,但提高了项目的可维护性,为未来的功能扩展打下了更好的基础。
测试与持续集成
测试套件也得到了增强,特别是:
-
解除了对Polars流式分组操作的一些预期失败标记(xfail),表明相关功能已经稳定。
-
修复了pointblank下游测试,确保与其他生态工具的兼容性。
-
移除了对旧版setuptools(<78)的CI支持,保持开发环境的现代性。
总结
Narwhals v1.37.0版本在性能、功能和稳定性方面都做出了有价值的改进。特别是fill_null功能的增强和表达式分组键的支持,将显著提升数据工作流的表达能力。同时,对Spark Connect的支持扩展了项目在分布式环境中的应用场景。
对于现有用户,建议升级以获取更好的性能和更多功能;对于新用户,这个版本展示了Narwhals作为统一数据处理接口的成熟度和潜力,值得考虑将其纳入数据科学工具链。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C073
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00