PyHSMM 项目教程
2024-09-13 21:25:24作者:范靓好Udolf
1. 项目介绍
PyHSMM 是一个用于在贝叶斯隐马尔可夫模型(HMMs)和显式持续时间隐半马尔可夫模型(HSMMs)中进行近似无监督推断的 Python 库。该项目主要关注贝叶斯非参数扩展,如 HDP-HMM 和 HDP-HSMM,并采用弱极限近似方法。PyHSMM 由 Matthew James Johnson 开发,基于 MIT 许可证发布。
2. 项目快速启动
安装
首先,确保你已经安装了 Python 和 pip。然后,你可以通过以下命令安装 PyHSMM:
pip install pyhsmm
如果你需要从源代码安装,可以使用以下命令:
git clone https://github.com/mattjj/pyhsmm.git
cd pyhsmm
python setup.py install
示例代码
以下是一个简单的示例,展示如何使用 PyHSMM 进行 HSMM 推断:
import numpy as np
from matplotlib import pyplot as plt
import pyhsmm
import pyhsmm.basic.distributions as distributions
# 生成一些示例数据
data = np.loadtxt('data.txt')
# 创建模型
obs_dim = 2
Nmax = 25
obs_hypparams = {'mu_0': np.zeros(obs_dim), 'sigma_0': np.eye(obs_dim), 'kappa_0': 0.3, 'nu_0': obs_dim + 5}
dur_hypparams = {'alpha_0': 2 * 30, 'beta_0': 2}
obs_distns = [distributions.Gaussian(**obs_hypparams) for state in range(Nmax)]
dur_distns = [distributions.PoissonDuration(**dur_hypparams) for state in range(Nmax)]
posteriormodel = pyhsmm.models.WeakLimitHDPHSMM(
alpha=6, gamma=6, # 这些参数可以采样,参考 concentration-resampling.py
init_state_concentration=6, # 这个参数影响不大
obs_distns=obs_distns,
dur_distns=dur_distns
)
# 添加数据
posteriormodel.add_data(data, trunc=60)
# 运行推断
models = []
for idx in range(150):
posteriormodel.resample_model()
if (idx + 1) % 10 == 0:
models.append(posteriormodel.copy())
# 绘制结果
fig = plt.figure()
for idx, model in enumerate(models):
plt.clf()
model.plot()
plt.gcf().suptitle('HDP-HSMM sampled after %d iterations' % (10 * (idx + 1)))
plt.savefig('iter_%03d.png' % (10 * (idx + 1)))
3. 应用案例和最佳实践
应用案例
PyHSMM 可以应用于多种时间序列数据的建模和推断任务,例如:
- 神经科学:分析神经元放电数据,推断潜在的神经状态和状态持续时间。
- 语音识别:建模语音信号的潜在状态和状态转换。
- 金融时间序列:分析股票价格或其他金融数据,推断潜在的市场状态。
最佳实践
- 参数调优:在实际应用中,建议对模型参数进行调优,特别是
alpha和gamma参数,可以通过采样方法进行优化。 - 数据预处理:确保输入数据已经过适当的预处理,例如归一化或标准化。
- 模型选择:根据具体应用选择合适的模型(HMM 或 HSMM),并考虑是否需要使用贝叶斯非参数扩展。
4. 典型生态项目
PyHSMM 作为一个强大的时间序列建模工具,可以与其他相关项目结合使用,形成更完整的解决方案:
- PyMC3:用于贝叶斯推断的 Python 库,可以与 PyHSMM 结合使用,进行更复杂的贝叶斯模型推断。
- NumPy 和 SciPy:用于数据处理和科学计算的基础库,PyHSMM 依赖于这些库进行数据操作和数学计算。
- Matplotlib:用于数据可视化的库,PyHSMM 提供了内置的可视化功能,但结合 Matplotlib 可以进行更高级的绘图。
通过这些生态项目的结合,可以进一步提升 PyHSMM 在实际应用中的表现和灵活性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878