Python装饰器详解:从基础到高级应用
2025-05-31 11:53:54作者:廉皓灿Ida
装饰器(Decorators)是Python中一个非常强大且优雅的特性,它允许开发者在不修改原始函数代码的情况下,为函数添加额外的功能。本文将带你全面理解装饰器的工作原理和实际应用场景。
装饰器基础概念
Python中的函数本质
理解装饰器前,需要明白Python中函数的几个重要特性:
- 函数是一等公民:函数可以像普通变量一样被赋值、传递
- 函数可以嵌套定义:在一个函数内部可以定义另一个函数
- 函数可以作为返回值:函数可以返回另一个函数
def outer_func():
def inner_func():
return "内部函数"
return inner_func
new_func = outer_func()
print(new_func()) # 输出: "内部函数"
装饰器的工作原理
装饰器本质上是一个高阶函数,它接受一个函数作为参数,并返回一个新的函数。最常见的装饰器使用方式是使用@符号:
def my_decorator(func):
def wrapper():
print("执行前操作")
func()
print("执行后操作")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
输出结果:
执行前操作
Hello!
执行后操作
解决装饰器的元信息问题
使用装饰器时,原始函数的__name__、__doc__等元信息会被替换为装饰器内部函数的元信息。为了解决这个问题,Python提供了functools.wraps装饰器:
from functools import wraps
def preserve_metadata(func):
@wraps(func)
def wrapper(*args, **kwargs):
"""包装函数的文档字符串"""
return func(*args, **kwargs)
return wrapper
@preserve_metadata
def example():
"""原始函数的文档字符串"""
pass
print(example.__name__) # 输出: "example"
print(example.__doc__) # 输出: "原始函数的文档字符串"
装饰器的实际应用场景
1. 授权检查
在Web开发中,装饰器常用于权限验证:
from functools import wraps
def requires_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if not current_user.is_authenticated:
return "请先登录"
return f(*args, **kwargs)
return decorated
@requires_auth
def profile_page():
return "个人资料页面"
2. 日志记录
装饰器可以方便地记录函数执行情况:
def log_activity(func):
@wraps(func)
def wrapper(*args, **kwargs):
print(f"开始执行: {func.__name__}")
result = func(*args, **kwargs)
print(f"完成执行: {func.__name__}")
return result
return wrapper
3. 性能测试
测量函数执行时间:
import time
def timing(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(f"{func.__name__} 执行时间: {end-start:.2f}秒")
return result
return wrapper
高级装饰器技巧
带参数的装饰器
装饰器本身也可以接受参数,这需要额外的一层嵌套:
def repeat(num_times):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(num_times):
result = func(*args, **kwargs)
return result
return wrapper
return decorator
@repeat(num_times=3)
def greet(name):
print(f"Hello {name}")
greet("World")
类装饰器
除了函数,类也可以作为装饰器使用:
class CountCalls:
def __init__(self, func):
self.func = func
self.num_calls = 0
def __call__(self, *args, **kwargs):
self.num_calls += 1
print(f"调用次数: {self.num_calls}")
return self.func(*args, **kwargs)
@CountCalls
def say_hello():
print("Hello!")
say_hello() # 输出: 调用次数: 1 → Hello!
say_hello() # 输出: 调用次数: 2 → Hello!
多个装饰器叠加
装饰器可以叠加使用,执行顺序是从下往上:
@decorator1
@decorator2
@decorator3
def func():
pass
# 等价于
func = decorator1(decorator2(decorator3(func)))
装饰器最佳实践
- 保持装饰器简单:每个装饰器应该只负责一个功能
- 使用functools.wraps:保留原始函数的元信息
- 考虑性能影响:装饰器会增加额外的函数调用开销
- 文档化装饰器:说明装饰器的用途和效果
- 避免过度使用:只在确实需要增强函数行为时使用
装饰器是Python中非常强大的工具,掌握它们可以让你写出更加简洁、优雅和可维护的代码。通过本文的学习,你应该已经具备了在实际项目中使用装饰器的能力。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Visual Studio 2015企业版中文版下载安装完全指南 - 专业开发工具必备资源 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 开源电子设计自动化利器:KiCad EDA全方位使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CVE-2024-38077伪代码修复版EXP资源详解:Windows远程桌面授权服务问题利用指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
297
2.64 K
Ascend Extension for PyTorch
Python
128
152
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
608
191
React Native鸿蒙化仓库
JavaScript
228
307
暂无简介
Dart
591
128
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
612
仓颉编译器源码及 cjdb 调试工具。
C++
122
496
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,专门为Transformer模型的训练和推理而设计。
C++
47
77
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
179
64
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
456