Python装饰器详解:从基础到高级应用
2025-05-31 11:53:54作者:廉皓灿Ida
装饰器(Decorators)是Python中一个非常强大且优雅的特性,它允许开发者在不修改原始函数代码的情况下,为函数添加额外的功能。本文将带你全面理解装饰器的工作原理和实际应用场景。
装饰器基础概念
Python中的函数本质
理解装饰器前,需要明白Python中函数的几个重要特性:
- 函数是一等公民:函数可以像普通变量一样被赋值、传递
- 函数可以嵌套定义:在一个函数内部可以定义另一个函数
- 函数可以作为返回值:函数可以返回另一个函数
def outer_func():
def inner_func():
return "内部函数"
return inner_func
new_func = outer_func()
print(new_func()) # 输出: "内部函数"
装饰器的工作原理
装饰器本质上是一个高阶函数,它接受一个函数作为参数,并返回一个新的函数。最常见的装饰器使用方式是使用@符号:
def my_decorator(func):
def wrapper():
print("执行前操作")
func()
print("执行后操作")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
输出结果:
执行前操作
Hello!
执行后操作
解决装饰器的元信息问题
使用装饰器时,原始函数的__name__、__doc__等元信息会被替换为装饰器内部函数的元信息。为了解决这个问题,Python提供了functools.wraps装饰器:
from functools import wraps
def preserve_metadata(func):
@wraps(func)
def wrapper(*args, **kwargs):
"""包装函数的文档字符串"""
return func(*args, **kwargs)
return wrapper
@preserve_metadata
def example():
"""原始函数的文档字符串"""
pass
print(example.__name__) # 输出: "example"
print(example.__doc__) # 输出: "原始函数的文档字符串"
装饰器的实际应用场景
1. 授权检查
在Web开发中,装饰器常用于权限验证:
from functools import wraps
def requires_auth(f):
@wraps(f)
def decorated(*args, **kwargs):
if not current_user.is_authenticated:
return "请先登录"
return f(*args, **kwargs)
return decorated
@requires_auth
def profile_page():
return "个人资料页面"
2. 日志记录
装饰器可以方便地记录函数执行情况:
def log_activity(func):
@wraps(func)
def wrapper(*args, **kwargs):
print(f"开始执行: {func.__name__}")
result = func(*args, **kwargs)
print(f"完成执行: {func.__name__}")
return result
return wrapper
3. 性能测试
测量函数执行时间:
import time
def timing(func):
@wraps(func)
def wrapper(*args, **kwargs):
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(f"{func.__name__} 执行时间: {end-start:.2f}秒")
return result
return wrapper
高级装饰器技巧
带参数的装饰器
装饰器本身也可以接受参数,这需要额外的一层嵌套:
def repeat(num_times):
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(num_times):
result = func(*args, **kwargs)
return result
return wrapper
return decorator
@repeat(num_times=3)
def greet(name):
print(f"Hello {name}")
greet("World")
类装饰器
除了函数,类也可以作为装饰器使用:
class CountCalls:
def __init__(self, func):
self.func = func
self.num_calls = 0
def __call__(self, *args, **kwargs):
self.num_calls += 1
print(f"调用次数: {self.num_calls}")
return self.func(*args, **kwargs)
@CountCalls
def say_hello():
print("Hello!")
say_hello() # 输出: 调用次数: 1 → Hello!
say_hello() # 输出: 调用次数: 2 → Hello!
多个装饰器叠加
装饰器可以叠加使用,执行顺序是从下往上:
@decorator1
@decorator2
@decorator3
def func():
pass
# 等价于
func = decorator1(decorator2(decorator3(func)))
装饰器最佳实践
- 保持装饰器简单:每个装饰器应该只负责一个功能
- 使用functools.wraps:保留原始函数的元信息
- 考虑性能影响:装饰器会增加额外的函数调用开销
- 文档化装饰器:说明装饰器的用途和效果
- 避免过度使用:只在确实需要增强函数行为时使用
装饰器是Python中非常强大的工具,掌握它们可以让你写出更加简洁、优雅和可维护的代码。通过本文的学习,你应该已经具备了在实际项目中使用装饰器的能力。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南
项目优选
收起
deepin linux kernel
C
24
8
Ascend Extension for PyTorch
Python
196
218
暂无简介
Dart
637
145
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
653
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
246
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
628
仓颉编译器源码及 cjdb 调试工具。
C++
128
859
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
74
99
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
385
3.73 K