MicroK8s中使用NVIDIA H100 GPU的配置与问题解决
背景介绍
在Kubernetes环境中使用GPU资源进行加速计算已成为AI和机器学习工作负载的常见需求。MicroK8s作为轻量级Kubernetes发行版,通过其GPU插件可以方便地管理NVIDIA GPU资源。然而,在使用最新NVIDIA H100 GPU时,用户可能会遇到一些兼容性问题。
问题现象
当在Azure VM上部署MicroK8s v1.28.9并启用GPU支持时,虽然主机上的nvidia-smi命令能够正确识别H100 GPU,但在Kubernetes中调度使用GPU的Pod时会出现资源不足的错误。具体表现为Pod处于Pending状态,错误信息显示"Insufficient nvidia.com/gpu"。
根本原因分析
通过日志分析发现,问题主要源于以下几个方面:
-
GPU Operator版本兼容性:默认安装的GPU Operator版本(v23.9.1)对H100 GPU和NVIDIA驱动550.90.07的支持不完善。
-
设备节点创建问题:GPU Operator在验证驱动安装时,尝试创建/dev/nvidiactl设备节点时失败,报错"failed to determine major: invalid device node"。
-
系统环境差异:Azure VM环境与标准物理服务器在设备管理方面可能存在差异,导致设备节点处理异常。
解决方案
经过多次测试验证,以下方案可以成功解决H100 GPU在MicroK8s中的使用问题:
- 升级GPU Operator版本:
microk8s enable gpu --version v24.3.0
- 使用兼容的测试镜像:
apiVersion: v1
kind: Pod
metadata:
name: cuda-vectoradd
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vectoradd
image: "nvidia/samples:vectoradd-cuda11.2.1"
resources:
limits:
nvidia.com/gpu: 1
注意事项
-
版本选择:测试表明v24.3.0到v24.6.2版本工作正常,但v24.9.0及以上版本可能会出现新的设备节点冲突问题。
-
环境准备:
- 确保主机已正确安装NVIDIA驱动
- 确认nvidia-smi命令能正常显示GPU信息
- 检查/dev目录下NVIDIA相关设备节点是否存在
-
权限配置:
- 确保用户已加入microk8s组
- 正确设置kubeconfig文件权限
验证方法
部署测试Pod后,可通过以下命令验证GPU是否正常工作:
kubectl logs pod/cuda-vectoradd
成功输出应包含"[Vector addition of 50000 elements] Test PASSED"等信息。
总结
在MicroK8s中使用最新NVIDIA GPU时,选择合适的GPU Operator版本至关重要。对于H100 GPU,推荐使用v24.3.0版本,并配合兼容的CUDA测试镜像。随着NVIDIA驱动和GPU Operator的持续更新,未来版本可能会提供更好的兼容性支持。在实际生产环境中部署前,建议先在测试环境充分验证GPU功能的完整性和稳定性。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0104Sealos
以应用为中心的智能云操作系统TSX00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile02
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









