MicroK8s中使用NVIDIA H100 GPU的配置与问题解决
背景介绍
在Kubernetes环境中使用GPU资源进行加速计算已成为AI和机器学习工作负载的常见需求。MicroK8s作为轻量级Kubernetes发行版,通过其GPU插件可以方便地管理NVIDIA GPU资源。然而,在使用最新NVIDIA H100 GPU时,用户可能会遇到一些兼容性问题。
问题现象
当在Azure VM上部署MicroK8s v1.28.9并启用GPU支持时,虽然主机上的nvidia-smi命令能够正确识别H100 GPU,但在Kubernetes中调度使用GPU的Pod时会出现资源不足的错误。具体表现为Pod处于Pending状态,错误信息显示"Insufficient nvidia.com/gpu"。
根本原因分析
通过日志分析发现,问题主要源于以下几个方面:
-
GPU Operator版本兼容性:默认安装的GPU Operator版本(v23.9.1)对H100 GPU和NVIDIA驱动550.90.07的支持不完善。
-
设备节点创建问题:GPU Operator在验证驱动安装时,尝试创建/dev/nvidiactl设备节点时失败,报错"failed to determine major: invalid device node"。
-
系统环境差异:Azure VM环境与标准物理服务器在设备管理方面可能存在差异,导致设备节点处理异常。
解决方案
经过多次测试验证,以下方案可以成功解决H100 GPU在MicroK8s中的使用问题:
- 升级GPU Operator版本:
microk8s enable gpu --version v24.3.0
- 使用兼容的测试镜像:
apiVersion: v1
kind: Pod
metadata:
name: cuda-vectoradd
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vectoradd
image: "nvidia/samples:vectoradd-cuda11.2.1"
resources:
limits:
nvidia.com/gpu: 1
注意事项
-
版本选择:测试表明v24.3.0到v24.6.2版本工作正常,但v24.9.0及以上版本可能会出现新的设备节点冲突问题。
-
环境准备:
- 确保主机已正确安装NVIDIA驱动
- 确认nvidia-smi命令能正常显示GPU信息
- 检查/dev目录下NVIDIA相关设备节点是否存在
-
权限配置:
- 确保用户已加入microk8s组
- 正确设置kubeconfig文件权限
验证方法
部署测试Pod后,可通过以下命令验证GPU是否正常工作:
kubectl logs pod/cuda-vectoradd
成功输出应包含"[Vector addition of 50000 elements] Test PASSED"等信息。
总结
在MicroK8s中使用最新NVIDIA GPU时,选择合适的GPU Operator版本至关重要。对于H100 GPU,推荐使用v24.3.0版本,并配合兼容的CUDA测试镜像。随着NVIDIA驱动和GPU Operator的持续更新,未来版本可能会提供更好的兼容性支持。在实际生产环境中部署前,建议先在测试环境充分验证GPU功能的完整性和稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00