MicroK8s在ARM64架构下启用GPU支持的技术实践
2025-05-26 14:07:35作者:尤峻淳Whitney
背景介绍
MicroK8s作为轻量级Kubernetes发行版,在边缘计算和云原生场景中广受欢迎。然而在ARM64架构(如AWS g5g.metal实例搭载的NVIDIA T4G显卡)上,默认情况下MicroK8s的GPU插件(gpu addon)并未启用。本文将详细介绍如何在ARM64架构上成功启用MicroK8s的GPU支持。
问题分析
MicroK8s的GPU插件默认仅针对AMD64架构进行测试和验证,因此在ARM64架构的实例上执行microk8s enable gpu命令时会返回"Addon gpu was not found in any repository"的错误提示。这并非功能不支持,而是出于稳定性考虑未默认开启。
解决方案
修改addons配置文件
通过编辑MicroK8s的核心插件配置文件,可以手动添加对ARM64架构的支持:
- 使用文本编辑器打开配置文件:
sudo vim /var/snap/microk8s/common/addons/core/addons.yaml
- 找到nvidia和gpu插件配置部分,在supported_architectures下添加arm64支持:
supported_architectures:
- amd64
- arm64 # 新增此行
- 保存修改后,执行启用命令:
sudo microk8s enable gpu
验证GPU支持
启用成功后,可以使用NVIDIA提供的CUDA示例容器进行验证。需要注意的是,官方示例镜像k8s.gcr.io/cuda-vector-add:v0.1不提供ARM64架构版本,应改用NVIDIA官方提供的多架构镜像:
nvidia/samples:vectoradd-cuda11.6.0-ubuntu20.04
技术原理
MicroK8s的GPU插件实际上是基于NVIDIA GPU Operator实现的,该Operator会自动部署以下组件:
- NVIDIA设备插件
- DCGM监控组件
- GPU功能发现组件
- 容器运行时hook
在ARM64架构上,这些组件同样可以正常工作,前提是使用正确的ARM64架构镜像版本。
注意事项
- 虽然技术上是可行的,但ARM64架构的GPU支持尚未经过MicroK8s官方CI的全面测试
- 不同型号的NVIDIA ARM GPU可能有不同的兼容性表现
- 生产环境使用前建议进行充分测试
- 关注MicroK8s版本更新,未来可能会官方支持ARM64 GPU
总结
通过简单的配置修改,用户可以在ARM64架构的服务器上启用MicroK8s的GPU加速功能。这为边缘AI、ARM云原生应用等场景提供了更多可能性。随着ARM生态的不断发展,预计MicroK8s未来会正式支持ARM64架构的GPU加速功能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134