MicroK8s 中使用 NVIDIA H100 GPU 的配置指南
2025-05-26 11:44:28作者:沈韬淼Beryl
问题背景
在 Kubernetes 集群中使用高性能 GPU 资源是现代 AI 和机器学习工作负载的常见需求。本文记录了在 MicroK8s 环境中配置和使用 NVIDIA H100 GPU 的完整过程,包括遇到的问题及其解决方案。
环境准备
首先需要在 Azure 虚拟机上部署以下环境:
- Ubuntu 操作系统
- NVIDIA H100 GPU 硬件
- 已安装 NVIDIA 驱动程序 550.90.07 版本
- CUDA 12.4 环境
初始配置步骤
- 安装 MicroK8s 1.28/stable 版本
- 启用必要的 MicroK8s 插件:DNS、hostpath-storage、ingress、metallb 和 RBAC
- 尝试启用 GPU 支持并部署测试 Pod
遇到的问题
在初始配置后,测试 Pod 无法正常调度,出现以下关键错误信息:
- Pod 调度失败,提示 "Insufficient nvidia.com/gpu"
- NVIDIA 容器工具包日志显示设备节点创建失败
- 验证容器报告无法创建 /dev/nvidiactl 的符号链接
根本原因分析
经过排查,发现问题的核心在于:
- 默认安装的 GPU Operator 版本(v23.9.1)不完全支持 H100 GPU 和较新的驱动程序(550系列)
- 系统存在设备节点创建冲突
- 符号链接验证机制与新硬件存在兼容性问题
解决方案
经过多次尝试,最终确定以下配置方案可以解决问题:
-
使用特定版本的 GPU Operator: 通过指定 v24.3.0 版本的 GPU Operator 解决了兼容性问题:
microk8s enable gpu --version v24.3.0 -
使用更新的测试镜像: 替换原来的测试镜像为 NVIDIA 官方提供的新版本:
image: "nvidia/samples:vectoradd-cuda11.2.1" -
完整的测试 Pod 配置:
apiVersion: v1 kind: Pod metadata: name: cuda-vectoradd spec: restartPolicy: OnFailure containers: - name: cuda-vectoradd image: "nvidia/samples:vectoradd-cuda11.2.1" resources: limits: nvidia.com/gpu: 1
验证结果
应用上述配置后,测试 Pod 成功运行并输出:
[Vector addition of 50000 elements]
Test PASSED
注意事项
- 较新版本的 GPU Operator(如 v24.9.0)可能会引入新的兼容性问题
- YAML 文件中的缩进必须严格正确
- 不同版本的 CUDA 可能需要匹配不同的测试镜像
总结
在 MicroK8s 中使用最新的 NVIDIA GPU 硬件时,需要注意选择合适的 GPU Operator 版本和测试镜像。本文提供的配置方案经过实际验证,可以作为在类似环境中部署 H100 GPU 的参考。对于生产环境,建议在部署前充分测试不同版本的组合,确保系统稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120